Show simple item record

dc.contributor.authorFurini, Fabio
dc.contributor.authorMalaguti, Enrico
dc.contributor.authorThomopulos, Dimitri
dc.date.accessioned2017-03-17T16:22:19Z
dc.date.available2017-03-17T16:22:19Z
dc.date.issued2016
dc.identifier.issn1091-9856
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/16381
dc.language.isoenen
dc.subjectinteger programmingen
dc.subjectguillotine cutsen
dc.subjectmathematical modelen
dc.subject.ddc518en
dc.titleModeling Two-Dimensional Guillotine Cutting Problems via Integer Programmingen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenWe propose a framework to model general guillotine restrictions in two-dimensional cutting problems formulated as mixed-integer linear programs (MIPs). The modeling framework requires a pseudopolynomial number of variables and constraints, which can be effectively enumerated for medium-size instances. Our modeling of general guillotine cuts is the first one that, once it is implemented within a state-of-the-art MIP solver, can tackle instances of challenging size. We mainly concentrate our analysis on the guillotine two-dimensional knapsack problem (G2KP), for which a model, and an exact procedure able to significantly improve the computational performance, are given. We also show how the modeling of general guillotine cuts can be extended to other relevant problems such as the guillotine two-dimensional cutting stock problem and the guillotine strip packing problem (GSPP). Finally, we conclude the paper discussing an extensive set of computational experiments on G2KP and GSPP benchmark instances from the literature.en
dc.relation.isversionofjnlnameINFORMS Journal on Computing
dc.relation.isversionofjnlvol28en
dc.relation.isversionofjnlissue4en
dc.relation.isversionofjnldate2016-10
dc.relation.isversionofjnlpages736-751en
dc.relation.isversionofdoi10.1287/ijoc.2016.0710en
dc.subject.ddclabelModèles mathématiques. Algorithmesen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen
dc.description.ssrncandidatenonen
dc.description.halcandidateouien
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.relation.Isversionofjnlpeerreviewednonen
dc.relation.Isversionofjnlpeerreviewednonen
dc.date.updated2017-03-17T16:02:44Z
hal.person.labIds989
hal.person.labIds461036
hal.person.labIds461036
hal.identifierhal-01492005*


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record