Error estimates for approximation schemes of effective Hamiltonians arising in stochastic homogenization of Hamilton-Jacobi equations
Hajej, Ahmed (2016), Error estimates for approximation schemes of effective Hamiltonians arising in stochastic homogenization of Hamilton-Jacobi equations, Numerical Algorithms, 73, 3, p. 839-868. 10.1007/s11075-016-0120-0
Type
Article accepté pour publication ou publiéDate
2016Journal name
Numerical AlgorithmsVolume
73Number
3Publisher
Baltzer
Pages
839-868
Publication identifier
Metadata
Show full item recordAbstract (EN)
We study approximation schemes for effective Hamiltonians arising in the homogenization of first order Hamilton-Jacobi equations in stationary ergodic settings. In particular, we prove error estimates concerning the rate of convergence of the approximated solution to the effective Hamiltonian. Our main motivations are front propagation problems, but our results can be generalized to other types of Hamiltonians.Subjects / Keywords
Hamilton-Jacobi equation; Front propagation; Homogenization in random media; Homogenization in periodic media; Effective Hamiltonian; Error estimate; Viscosity solutionRelated items
Showing items related by title and author.
-
Error estimates and convergence rates for the stochastic homogenization of Hamilton-Jacobi equations Armstrong, Scott N.; Cardaliaguet, Pierre; Souganidis, Panagiotis E. (2014) Article accepté pour publication ou publié
-
Hajej, Ahmed (2016) Document de travail / Working paper
-
L^1-error estimate for numerical approximations of Hamilton-Jacobi-Bellman equations in dimension 1 Bokanowski, Olivier; Forcadel, Nicolas; Zidani, Hasnaa (2010) Article accepté pour publication ou publié
-
Feldman, William M.; Fermanian, Jean-Baptiste; Ziliotto, Bruno (2019) Document de travail / Working paper
-
Cardaliaguet, Pierre; Souganidis, Panagiotis E. (2017) Article accepté pour publication ou publié