Show simple item record

hal.structure.identifier
dc.contributor.authorFriz, Peter K.*
hal.structure.identifier
dc.contributor.authorGassiat, Paul*
hal.structure.identifier
dc.contributor.authorLions, Pierre-Louis*
hal.structure.identifier
dc.contributor.authorSouganidis, Panagiotis E.*
dc.date.accessioned2017-03-15T14:48:46Z
dc.date.available2017-03-15T14:48:46Z
dc.date.issued2017
dc.identifier.issn2194-0401
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/16355
dc.language.isoenen
dc.subjectFully non-linear stochastic partial differential equations
dc.subjectEikonal equations
dc.subjectPathwise stability
dc.subjectRough paths
dc.subject.ddc515en
dc.titleEikonal equations and pathwise solutions to fully non-linear SPDEs
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenWe study the existence and uniqueness of the stochastic viscosity solutions of fully nonlinear, possibly degenerate, second order stochastic pde with quadratic Hamiltonians associated to a Riemannian geometry. The results are new and extend the class of equations studied so far by the last two authors.
dc.relation.isversionofjnlnameStochastics and Partial Differential Equations: Analysis and Computations
dc.relation.isversionofjnlvol5
dc.relation.isversionofjnlissue2
dc.relation.isversionofjnldate2017
dc.relation.isversionofjnlpages256-277
dc.relation.isversionofdoi10.1007/s40072-016-0087-9
dc.identifier.urlsitehttps://arxiv.org/abs/1602.04746v1
dc.relation.isversionofjnlpublisherSpringer
dc.subject.ddclabelAnalyseen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen
dc.description.ssrncandidatenon
dc.description.halcandidateoui
dc.description.readershiprecherche
dc.description.audienceInternational
dc.relation.Isversionofjnlpeerreviewedoui
dc.date.updated2019-02-22T10:27:16Z
hal.author.functionaut
hal.author.functionaut
hal.author.functionaut
hal.author.functionaut


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record