Time-Approximation Trade-offs for Inapproximable Problems
Bonnet, Édouard; Lampis, Michael; Paschos, Vangelis (2016), Time-Approximation Trade-offs for Inapproximable Problems, in Ollinger, Nicolas; Vollmer, Heribert, 33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016), Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik : Wadern, p. 22:1-22:14. 10.4230/LIPIcs.STACS.2016.22
Type
Communication / ConférenceDate
2016Conference title
33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016)Conference date
2016-02Conference city
OrléansConference country
FranceBook title
33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016)Book author
Ollinger, Nicolas; Vollmer, HeribertPublisher
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik
Published in
Wadern
ISBN
978-3-95977-001-9
Number of pages
798Pages
22:1-22:14
Publication identifier
Metadata
Show full item recordAuthor(s)
Bonnet, Édouard
Institute for Computer Science and Control [Budapest] [SZTAKI]
Lampis, Michael

Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Paschos, Vangelis
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
In this paper we focus on problems which do not admit a constant-factor approximation in polynomial time and explore how quickly their approximability improves as the allowed running time is gradually increased from polynomial to (sub-)exponential. We tackle a number of problems: For MIN INDEPENDENT DOMINATING SET, MAX INDUCED PATH, FOREST and TREE, for any r(n), a simple, known scheme gives an approximation ratio of r in time roughly r^{n/r}. We show that, for most values of r, if this running time could be significantly improved the ETH would fail. For MAX MINIMAL VERTEX COVER we give a non-trivial sqrt{r}-approximation in time 2^{n/{r}}. We match this with a similarly tight result. We also give a log(r)-approximation for MIN ATSP in time 2^{n/r} and an r-approximation for MAX GRUNDY COLORING in time r^{n/r}. Furthermore, we show that MIN SET COVER exhibits a curious behavior in this super-polynomial setting: for any delta>0 it admits an m^delta-approximation, where m is the number of sets, in just quasi-polynomial time. We observe that if such ratios could be achieved in polynomial time, the ETH or the Projection Games Conjecture would fail.Subjects / Keywords
Approximation; Complexity; Polynomial and Subexponential Approximation; Reduction; InapproximabilityRelated items
Showing items related by title and author.
-
Bonnet, Édouard; Lampis, Michael; Paschos, Vangelis (2018) Article accepté pour publication ou publié
-
Bonnet, Édouard; Paschos, Vangelis; Sikora, Florian (2016) Article accepté pour publication ou publié
-
Bonnet, Edouard; Escoffier, Bruno; Paschos, Vangelis; Stamoulis, Georgios (2018) Article accepté pour publication ou publié
-
Katsikarelis, Ioannis; Lampis, Michael; Paschos, Vangelis (2019) Article accepté pour publication ou publié
-
Fotakis, Dimitris; Lampis, Michael; Paschos, Vangelis (2016) Communication / Conférence