Bayesian Estimation of Small Effects in Exercise and Sports Science
Mengersen, Kerrie; Drovandi, Christopher C.; Robert, Christian P.; Pyne, David B.; Gore, Christopher J. (2016), Bayesian Estimation of Small Effects in Exercise and Sports Science, PLoS ONE, 11, 4, p. e0147311. 10.1371/journal.pone.0147311
Type
Article accepté pour publication ou publiéExternal document link
http://dx.doi.org/10.1371/journal.pone.0147311Date
2016Journal name
PLoS ONEVolume
11Number
4Publisher
Public Library of Science
Pages
e0147311
Publication identifier
Metadata
Show full item recordAuthor(s)
Mengersen, KerrieDrovandi, Christopher C.
Robert, Christian P.
Pyne, David B.
Gore, Christopher J.
Abstract (EN)
The aim of this paper is to provide a Bayesian formulation of the so-called magnitude-based inference approach to quantifying and interpreting effects, and in a case study example provide accurate probabilistic statements that correspond to the intended magnitude-based inferences. The model is described in the context of a published small-scale athlete study which employed a magnitude-based inference approach to compare the effect of two altitude training regimens (live high-train low (LHTL), and intermittent hypoxic exposure (IHE)) on running performance and blood measurements of elite triathletes. The posterior distributions, and corresponding point and interval estimates, for the parameters and associated effects and comparisons of interest, were estimated using Markov chain Monte Carlo simulations. The Bayesian analysis was shown to provide more direct probabilistic comparisons of treatments and able to identify small effects of interest. The approach avoided asymptotic assumptions and overcame issues such as multiple testing. Bayesian analysis of unscaled effects showed a probability of 0.96 that LHTL yields a substantially greater increase in hemoglobin mass than IHE, a 0.93 probability of a substantially greater improvement in running economy and a greater than 0.96 probability that both IHE and LHTL yield a substantially greater improvement in maximum blood lactate concentration compared to a Placebo. The conclusions are consistent with those obtained using a ‘magnitude-based inference’ approach that has been promoted in the field. The paper demonstrates that a fully Bayesian analysis is a simple and effective way of analysing small effects, providing a rich set of results that are straightforward to interpret in terms of probabilistic statements.Subjects / Keywords
Bayesian analysisRelated items
Showing items related by title and author.
-
Moores, Matthew T.; Drovandi, Christopher C.; Mengersen, Kerrie; Robert, Christian P. (2015) Article accepté pour publication ou publié
-
Marin, Jean-Michel; Mengersen, Kerrie; Robert, Christian P. (2005) Chapitre d'ouvrage
-
Alston, C.L.; Mengersen, Kerrie; Robert, Christian P.; Thompson, J.M.; Littlefield, P.J.; Perry, D.; Ball, A.J. (2007) Article accepté pour publication ou publié
-
Mengersen, Kerrie; Robert, Christian P. (2011) Chapitre d'ouvrage
-
Titterington, Mike; Robert, Christian P.; Mengersen, Kerrie (2011) Ouvrage