Lipschitz Regularity for Elliptic Equations with Random Coefficients
Armstrong, Scott N.; Mourrat, Jean-Christophe (2016), Lipschitz Regularity for Elliptic Equations with Random Coefficients, Archive for Rational Mechanics and Analysis, 219, 1, p. 255-348. 10.1007/s00205-015-0908-4
Type
Article accepté pour publication ou publiéExternal document link
https://arxiv.org/abs/1411.3668v3Date
2016Journal name
Archive for Rational Mechanics and AnalysisVolume
219Number
1Publisher
Springer
Pages
255-348
Publication identifier
Metadata
Show full item recordAbstract (EN)
We develop a higher regularity theory for general quasilinear elliptic equations and systems in divergence form with random coefficients. The main result is a large-scale L∞-type estimate for the gradient of a solution. The estimate is proved with optimal stochastic integrability under a one-parameter family of mixing assumptions, allowing for very weak mixing with non-integrable correlations to very strong mixing (for example finite range of dependence). We also prove a quenched L2 estimate for the error in homogenization of Dirichlet problems. The approach is based on subadditive arguments which rely on a variational formulation of general quasilinear divergence-form equations.Subjects / Keywords
quasilinear elliptic equationsRelated items
Showing items related by title and author.
-
Armstrong, Scott N.; Kuusi, Tuomo; Mourrat, Jean-Christophe (2016) Article accepté pour publication ou publié
-
Armstrong, Scott N.; Kuusi, Tuomo; Mourrat, Jean-Christophe (2017) Article accepté pour publication ou publié
-
Armstrong, Scott N.; Kuusi, Tuomo; Mourrat, Jean-Christophe; Prange, Christophe (2017) Article accepté pour publication ou publié
-
Furlan, Marco; Mourrat, Jean-Christophe (2017) Article accepté pour publication ou publié
-
Armstrong, Scott N.; Lin, Jessica (2017) Article accepté pour publication ou publié