• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Stochastic control with rough paths

Diehl, Joscha; Friz, Peter K.; Gassiat, Paul (2017), Stochastic control with rough paths, Applied Mathematics & Optimization, 75, 2, p. 285-315. 10.1007/s00245-016-9333-9

Type
Article accepté pour publication ou publié
External document link
https://arxiv.org/abs/1303.7160v2
Date
2017
Journal name
Applied Mathematics & Optimization
Volume
75
Number
2
Pages
285-315
Publication identifier
10.1007/s00245-016-9333-9
Metadata
Show full item record
Author(s)
Diehl, Joscha
Friz, Peter K.
Gassiat, Paul
Abstract (EN)
We study a class of controlled differential equations driven by rough paths (or rough path realizations of Brownian motion) in the sense of Lyons. It is shown that the value function satisfies a HJB type equation; we also establish a form of the Pontryagin maximum principle. Deterministic problems of this type arise in the duality theory for controlled diffusion processes and typically involve anticipating stochastic analysis. We make the link to old work of Davis and Burstein (Stoch Stoch Rep 40:203–256, 1992) and then prove a continuous-time generalization of Roger’s duality formula [SIAM J Control Optim 46:1116–1132, 2007]. The generic case of controlled volatility is seen to give trivial duality bounds, and explains the focus in Burstein–Davis’ (and this) work on controlled drift. Our study of controlled rough differential equations also relates to work of Mazliak and Nourdin (Stoch Dyn 08:23, 2008).
Subjects / Keywords
Stochastic control; Duality; Rough paths

Related items

Showing items related by title and author.

  • Thumbnail
    A regularity structure for rough volatility 
    Bayer, Christian; Friz, Peter; Gassiat, Paul; Martin, Jorg; Stemper, Benjamin (2020) Article accepté pour publication ou publié
  • Thumbnail
    Short dated smile under Rough Volatility: asymptotics and numerics 
    Friz, Peter K.; Gassiat, Paul; Pigato, Paolo (2021) Document de travail / Working paper
  • Thumbnail
    Precise asymptotics: robust stochastic volatility models 
    Friz, Peter K.; Gassiat, Paul; Pigato, Paolo (2021) Article accepté pour publication ou publié
  • Thumbnail
    Malliavin calculus for regularity structures: The case of gPAM 
    Cannizzaro, G.; Friz, Peter K.; Gassiat, Paul (2017) Article accepté pour publication ou publié
  • Thumbnail
    Eikonal equations and pathwise solutions to fully non-linear SPDEs 
    Friz, Peter K.; Gassiat, Paul; Lions, Pierre-Louis; Souganidis, Panagiotis E. (2017) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo