• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

Bi-objective matchings with the triangle inequality

Thumbnail
Date
2017
Dewey
Recherche opérationnelle
Sujet
Bi-objective optimization; Approximation algorithm; Matching
Journal issue
Theoretical Computer Science
Volume
670
Publication date
2017
Article pages
1-10
Publisher
Elsevier
DOI
http://dx.doi.org/10.1016/j.tcs.2017.01.012
URI
https://basepub.dauphine.fr/handle/123456789/16294
Collections
  • LAMSADE : Publications
Metadata
Show full item record
Author
Gourvès, Laurent
989 Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Monnot, Jérôme
989 Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Pascual, Fanny
Vanderpooten, Daniel
989 Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Type
Article accepté pour publication ou publié
Abstract (EN)
This article deals with a bi-objective matching problem. The input is a complete graph and two values on each edge (a weight and a length) which satisfy the triangle inequality. It is unlikely that every instance admits a matching with maximum weight and maximum length at the same time. Therefore, we look for a compromise solution, i.e. a matching that simultaneously approximates the best weight and the best length. For which approximation ratio ρ can we guarantee that any instance admits a ρ-approximate matching? We propose a general method which relies on the existence of an approximate matching in any graph of small size. An algorithm for computing a 1/3-approximate matching in any instance is provided. The algorithm uses an analytical result stating that every instance on at most 6 nodes must admit a 1/2-approximate matching. We extend our analysis with a computer-aided approach for larger graphs, indicating that the general method may produce a 2/5-approximate matching. We conjecture that a 1/2-approximate matching exists in any bi-objective instance satisfying the triangle inequality.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.