Inertial Game Dynamics and Applications to Constrained Optimization
hal.structure.identifier | Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE] | |
dc.contributor.author | Laraki, Rida
HAL ID: 179670 ORCID: 0000-0002-4898-2424 | |
hal.structure.identifier | Laboratoire d'Informatique de Grenoble [LIG] | |
dc.contributor.author | Mertikopoulos, Panayotis
HAL ID: 1933 ORCID: 0000-0003-2026-9616 | |
dc.date.accessioned | 2017-03-06T13:58:10Z | |
dc.date.available | 2017-03-06T13:58:10Z | |
dc.date.issued | 2015 | |
dc.identifier.issn | 0363-0129 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/16290 | |
dc.language.iso | en | en |
dc.subject | Game dynamics | en |
dc.subject | folk theorem | en |
dc.subject | Hessian–Riemannian metrics | en |
dc.subject | learning | en |
dc.subject | replicator dynamics | en |
dc.subject | second-order dynamics | en |
dc.subject | stability of equilibria | en |
dc.subject | well-posedness | en |
dc.subject.ddc | 519 | en |
dc.subject.classificationjel | C.C7.C79 | en |
dc.title | Inertial Game Dynamics and Applications to Constrained Optimization | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | Aiming to provide a new class of game dynamics with good long-term convergence properties, we derive a second-order inertial system that builds on the widely studied “heavy ball with friction” optimization method. By exploiting a well-known link between the replicator dynamics and the Shahshahani geometry on the space of mixed strategies, the dynamics are stated in a Riemannian geometric framework where trajectories are accelerated by the players' unilateral payoff gradients and they slow down near Nash equilibria. Surprisingly (and in stark contrast to another second-order variant of the replicator dynamics), the inertial replicator dynamics are not well-posed; on the other hand, it is possible to obtain a well-posed system by endowing the mixed strategy space with a different Hessian--Riemannian (HR) metric structure, and we characterize those HR geometries that do so. In the single-agent version of the dynamics (corresponding to constrained optimization over simplex-like objects), we show that regular maximum points of smooth functions attract all nearby solution orbits with low initial speed. More generally, we establish an inertial variant of the so-called folk theorem of evolutionary game theory, and we show that strict equilibria are attracting in asymmetric (multipopulation) games, provided, of course, that the dynamics are well-posed. A similar asymptotic stability result is obtained for evolutionarily stable states in symmetric (single-population) games. | en |
dc.relation.isversionofjnlname | SIAM Journal on Control and Optimization | |
dc.relation.isversionofjnlvol | 53 | en |
dc.relation.isversionofjnlissue | 5 | en |
dc.relation.isversionofjnldate | 2015-10 | |
dc.relation.isversionofjnlpages | 3141-3170 | en |
dc.relation.isversionofdoi | 10.1137/130920253 | en |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |
dc.relation.forthcoming | non | en |
dc.relation.forthcomingprint | non | en |
dc.description.ssrncandidate | non | en |
dc.description.halcandidate | oui | en |
dc.description.readership | recherche | en |
dc.description.audience | International | en |
dc.relation.Isversionofjnlpeerreviewed | oui | en |
dc.relation.Isversionofjnlpeerreviewed | oui | en |
dc.date.updated | 2017-03-06T13:30:36Z | |
hal.identifier | hal-01483807 | * |
hal.version | 1 | * |
hal.update.action | updateFiles | * |
hal.author.function | aut | |
hal.author.function | aut |