• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Aide
  • Connexion
  • Langue 
    • Français
    • English
Consulter le document 
  •   Accueil
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • Consulter le document
  •   Accueil
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • Consulter le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Afficher

Toute la baseCentres de recherche & CollectionsAnnée de publicationAuteurTitreTypeCette collectionAnnée de publicationAuteurTitreType

Mon compte

Connexion

Enregistrement

Statistiques

Documents les plus consultésStatistiques par paysAuteurs les plus consultés
Thumbnail

Inertial Game Dynamics and Applications to Constrained Optimization

Laraki, Rida; Mertikopoulos, Panayotis (2015), Inertial Game Dynamics and Applications to Constrained Optimization, SIAM Journal on Control and Optimization, 53, 5, p. 3141-3170. 10.1137/130920253

Voir/Ouvrir
InertialDynamics.pdf (2.628Mb)
Type
Article accepté pour publication ou publié
Date
2015
Nom de la revue
SIAM Journal on Control and Optimization
Volume
53
Numéro
5
Pages
3141-3170
Identifiant publication
10.1137/130920253
Métadonnées
Afficher la notice complète
Auteur(s)
Laraki, Rida cc
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Mertikopoulos, Panayotis cc
Laboratoire d'Informatique de Grenoble [LIG]
Résumé (EN)
Aiming to provide a new class of game dynamics with good long-term convergence properties, we derive a second-order inertial system that builds on the widely studied “heavy ball with friction” optimization method. By exploiting a well-known link between the replicator dynamics and the Shahshahani geometry on the space of mixed strategies, the dynamics are stated in a Riemannian geometric framework where trajectories are accelerated by the players' unilateral payoff gradients and they slow down near Nash equilibria. Surprisingly (and in stark contrast to another second-order variant of the replicator dynamics), the inertial replicator dynamics are not well-posed; on the other hand, it is possible to obtain a well-posed system by endowing the mixed strategy space with a different Hessian--Riemannian (HR) metric structure, and we characterize those HR geometries that do so. In the single-agent version of the dynamics (corresponding to constrained optimization over simplex-like objects), we show that regular maximum points of smooth functions attract all nearby solution orbits with low initial speed. More generally, we establish an inertial variant of the so-called folk theorem of evolutionary game theory, and we show that strict equilibria are attracting in asymmetric (multipopulation) games, provided, of course, that the dynamics are well-posed. A similar asymptotic stability result is obtained for evolutionarily stable states in symmetric (single-population) games.
Mots-clés
Game dynamics; folk theorem; Hessian–Riemannian metrics; learning; replicator dynamics; second-order dynamics; stability of equilibria; well-posedness
JEL
C79 - Other

Publications associées

Affichage des éléments liés par titre et auteur.

  • Vignette de prévisualisation
    Higher Order Games Dynamics 
    Laraki, Rida; Mertikopoulos, Panayotis (2012) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Learning in nonatomic games, Part I: Finite action spaces and population games 
    Hadikhanloo, Saeed; Laraki, Rida; Mertikopoulos, Panayotis; Sorin, Sylvain (2021) Document de travail / Working paper
  • Vignette de prévisualisation
    Advances in zero-sum dynamic games 
    Laraki, Rida; Sorin, Sylvain (2015) Chapitre d'ouvrage
  • Vignette de prévisualisation
    A new approach to learning in Dynamic Bayesian Networks (DBNs) 
    Benhamou, Eric; Atif, Jamal; Laraki, Rida (2018) Document de travail / Working paper
  • Vignette de prévisualisation
    Imitation Dynamics with Payoff Shocks 
    Mertikopoulos, Panayotis; Viossat, Yannick (2016) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Tél. : 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo