
Discovering Characteristics that Affect Process Control Flow
Delias, Pavlos; Grigori, Daniela; Mouhoub, Mohamed Lamine; Tsoukiàs, Alexis (2015), Discovering Characteristics that Affect Process Control Flow, dans I. Linden, S. Liu, F. Dargam, J. Hernández, Decision Support Systems IV - Information and Knowledge Management in Decision Processes: Euro Working Group Conferences, EWG-DSS 2014, Toulouse, France, June 10-13, 2014, and Barcelona, Spain, July 13-18, 2014, Revised Selected and Extended Papers, Springer : Berlin Heidelberg, p. 51-63. 10.1007/978-3-319-21536-5_5
Voir/Ouvrir
Type
Chapitre d'ouvrageDate
2015Titre de l'ouvrage
Decision Support Systems IV - Information and Knowledge Management in Decision Processes: Euro Working Group Conferences, EWG-DSS 2014, Toulouse, France, June 10-13, 2014, and Barcelona, Spain, July 13-18, 2014, Revised Selected and Extended PapersAuteurs de l’ouvrage
I. Linden, S. Liu, F. Dargam, J. HernándezÉditeur
Springer
Ville d’édition
Berlin Heidelberg
Isbn
978-3-319-21535-8
Pages
51-63
Identifiant publication
Métadonnées
Afficher la notice complèteAuteur(s)
Delias, PavlosLaboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Grigori, Daniela
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Mouhoub, Mohamed Lamine
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Tsoukiàs, Alexis

Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Résumé (EN)
In flexible environments like healthcare and customer service, business processes are executed with high variability. Often, this is because cases’ characteristics vary. However, it is difficult to correlate process flow with characteristics because characteristics may refer to different perspectives, their number can be real big or even because deep domain knowledge may be required to state hypotheses. The goal of this paper is to propose an effective exploratory tool for discovering the characteristics that are causing the process variation. To this end, we propose a process mining approach. First, we apply a clustering approach based on Latent Class Analysis to identify subtypes of related cases based on the case-wise process characteristics. Then, a process model is discovered for each cluster and through a model similarity step, we are able to recommend the characteristics that mostly diversify the flow. Finally, to validate our methodology, we applied it to both simulated and real datasets.Mots-clés
process mining; decision analysisPublications associées
Affichage des éléments liés par titre et auteur.
-
Delias, Pavlos; Lagopoulos, Athanasios; Tsoumakas, Grigorios; Grigori, Daniela (2018) Article accepté pour publication ou publié
-
Delias, Pavlos; Grigori, Daniela (2021) Article accepté pour publication ou publié
-
Delias, Pavlos; Acheli, Mehdi; Grigori, Daniela (2019) Communication / Conférence
-
Mouhoub, Mohamed Lamine; Grigori, Daniela; Manouvrier, Maude (2015) Communication / Conférence
-
Mouhoub, Mohamed Lamine; Grigori, Daniela; Manouvrier, Maude (2014) Communication / Conférence