• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Parameterized Inapproximability of Target Set Selection and Generalizations

Bazgan, Cristina; Chopin, Morgan; Nichterlein, André; Sikora, Florian (2014), Parameterized Inapproximability of Target Set Selection and Generalizations, in Arnold Beckmann, Erzsébet Csuhaj-Varjú, Klaus Meer, Language, Life, Limits.10th Conference on Computability in Europe, CiE 2014, Budapest, Hungary, June 23-27, 2014. Proceedings, Springer : Berlin Heidelberg, p. 11-20. 10.1007/978-3-319-08019-2_2

Type
Communication / Conférence
External document link
https://arxiv.org/abs/1403.3565v2
Date
2014
Book title
Language, Life, Limits.10th Conference on Computability in Europe, CiE 2014, Budapest, Hungary, June 23-27, 2014. Proceedings
Book author
Arnold Beckmann, Erzsébet Csuhaj-Varjú, Klaus Meer
Publisher
Springer
Published in
Berlin Heidelberg
ISBN
978-3-319-08018-5
Pages
11-20
Publication identifier
10.1007/978-3-319-08019-2_2
Metadata
Show full item record
Author(s)
Bazgan, Cristina
Chopin, Morgan
Nichterlein, André
Sikora, Florian cc
Abstract (EN)
In this paper, we consider the Target Set Selection problem: given a graph and a threshold value https://static-content.springer.com/image/chp%3A10.1007%2F978-3-319-08019-2_2/978-3-319-08019-2_2_IEq1_HTML.gif for each vertex v of the graph, find a minimum size vertex-subset to “activate” s.t. all the vertices of the graph are activated at the end of the propagation process. A vertex v is activated during the propagation process if at least https://static-content.springer.com/image/chp%3A10.1007%2F978-3-319-08019-2_2/978-3-319-08019-2_2_IEq2_HTML.gif of its neighbors are activated. This problem models several practical issues like faults in distributed networks or word-to-mouth recommendations in social networks. We show that for any functions f and ρ this problem cannot be approximated within a factor of ρ(k) in f(k) ·n O(1) time, unless FPT = W[P], even for restricted thresholds (namely constant and majority thresholds). We also study the cardinality constraint maximization and minimization versions of the problem for which we prove similar hardness results.
Subjects / Keywords
Target Set Selection problem
JEL
C44 - Operations Research; Statistical Decision Theory

Related items

Showing items related by title and author.

  • Thumbnail
    Parameterized Inapproximability of Target Set Selection and Generalizations 
    Bazgan, Cristina; Chopin, Morgan; Nichterlein, André; Sikora, Florian (2014) Article accepté pour publication ou publié
  • Thumbnail
    Parameterized Approximability of Maximizing the Spread of Influence in Networks 
    Bazgan, Cristina; Chopin, Morgan; Nichterlein, André; Sikora, Florian (2013) Communication / Conférence
  • Thumbnail
    Parameterized approximability of maximizing the spread of influence in networks 
    Bazgan, Cristina; Chopin, Morgan; Nichterlein, André; Sikora, Florian (2014) Article accepté pour publication ou publié
  • Thumbnail
    Constant Thresholds Can Make Target Set Selection Tractable 
    Chopin, Morgan; Nichterlein, André; Niedermeier, Rolf; Weller, Mathias (2014) Article accepté pour publication ou publié
  • Thumbnail
    Parameterized Inapproximability of Degree Anonymization 
    Bazgan, Cristina; Nichterlein, André (2014) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo