• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

Parameterized Inapproximability of Target Set Selection and Generalizations

Thumbnail
Date
2014
Link to item file
https://arxiv.org/abs/1403.3565v2
Dewey
Recherche opérationnelle
Sujet
Target Set Selection problem
JEL code
C.C4.C44
DOI
http://dx.doi.org/10.1007/978-3-319-08019-2_2
Book title
Language, Life, Limits.10th Conference on Computability in Europe, CiE 2014, Budapest, Hungary, June 23-27, 2014. Proceedings
Author
Arnold Beckmann, Erzsébet Csuhaj-Varjú, Klaus Meer
Publisher
Springer
Publisher city
Berlin Heidelberg
Year
2014
ISBN
978-3-319-08018-5
Book URL
10.1007/978-3-319-08019-2
URI
https://basepub.dauphine.fr/handle/123456789/15892
Collections
  • LAMSADE : Publications
Metadata
Show full item record
Author
Bazgan, Cristina
Chopin, Morgan
Nichterlein, André
Sikora, Florian
Type
Communication / Conférence
Item number of pages
11-20
Abstract (EN)
In this paper, we consider the Target Set Selection problem: given a graph and a threshold value https://static-content.springer.com/image/chp%3A10.1007%2F978-3-319-08019-2_2/978-3-319-08019-2_2_IEq1_HTML.gif for each vertex v of the graph, find a minimum size vertex-subset to “activate” s.t. all the vertices of the graph are activated at the end of the propagation process. A vertex v is activated during the propagation process if at least https://static-content.springer.com/image/chp%3A10.1007%2F978-3-319-08019-2_2/978-3-319-08019-2_2_IEq2_HTML.gif of its neighbors are activated. This problem models several practical issues like faults in distributed networks or word-to-mouth recommendations in social networks. We show that for any functions f and ρ this problem cannot be approximated within a factor of ρ(k) in f(k) ·n O(1) time, unless FPT = W[P], even for restricted thresholds (namely constant and majority thresholds). We also study the cardinality constraint maximization and minimization versions of the problem for which we prove similar hardness results.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.