• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Second order mean field games with degenerate diffusion and local coupling

Cardaliaguet, Pierre; Graber, Philip Jameson; Porretta, Alessio; Tonon, Daniela (2015), Second order mean field games with degenerate diffusion and local coupling, Nonlinear Differential Equations and Applications NoDEA, 22, 5, p. 1287-1317. 10.1007/s00030-015-0323-4

Type
Article accepté pour publication ou publié
External document link
https://arxiv.org/abs/1407.7024v1
Date
2015
Journal name
Nonlinear Differential Equations and Applications NoDEA
Volume
22
Number
5
Publisher
Springer
Pages
1287-1317
Publication identifier
10.1007/s00030-015-0323-4
Metadata
Show full item record
Author(s)
Cardaliaguet, Pierre
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Graber, Philip Jameson
Unité de Mathématiques Appliquées [UMA]
Porretta, Alessio
Dipartimento di Matematica [Roma II] [DIPMAT]
Tonon, Daniela
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We analyze a (possibly degenerate) second order mean field games system of partial differential equations. The distinguishing features of the model considered are (1) that it is not uniformly parabolic, including the first order case as a possibility, and (2) the coupling is a local operator on the density. As a result we look for weak, not smooth, solutions. Our main result is the existence and uniqueness of suitably defined weak solutions, which are characterized as minimizers of two optimal control problems. We also show that such solutions are stable with respect to the data, so that in particular the degenerate case can be approximated by a uniformly parabolic (viscous) perturbation.
Subjects / Keywords
MFG weak solutions

Related items

Showing items related by title and author.

  • Thumbnail
    Degenerate second order mean field games systems 
    Porretta, Alessio; Graber, Philip Jameson; Cardaliaguet, Pierre; Tonon, Daniela (2014) Communication / Conférence
  • Thumbnail
    Mean field games systems of first order 
    Cardaliaguet, Pierre; Graber, Philip Jameson (2015) Article accepté pour publication ou publié
  • Thumbnail
    Long Time Average of Mean Field Games with a Nonlocal Coupling 
    Porretta, Alessio; Lions, Pierre-Louis; Lasry, Jean-Michel; Cardaliaguet, Pierre (2013) Article accepté pour publication ou publié
  • Thumbnail
    The planning problem in mean field games as regularizedmass transport 
    Graber, Philip Jameson; Mészáros, Alpár Richárd; Silva, Francisco J.; Tonon, Daniela (2019) Article accepté pour publication ou publié
  • Thumbnail
    Weak solutions for first order mean field games with local coupling 
    Cardaliaguet, Pierre (2015) Chapitre d'ouvrage
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo