Show simple item record

dc.contributor.authorChevaleyre, Yann
dc.contributor.authorEndriss, Ulle
dc.contributor.authorLang, Jérôme
dc.contributor.authorUckelman, Joel
dc.date.accessioned2009-09-14T08:47:46Z
dc.date.available2009-09-14T08:47:46Z
dc.date.issued2009
dc.identifier.issn0942-5616
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/1572
dc.language.isoenen
dc.subjectComputational complexity
dc.subjectPreference representation
dc.subjectcomputational social choice
dc.subject.ddc519en
dc.titleRepresenting Utility Functions via Weighted Goals
dc.typeArticle accepté pour publication ou publié
dc.contributor.editoruniversityotherInstitute for Logic, Language and Computation (ILLC), University of Amsterdam;Pays-Bas
dc.description.abstractenWe analyze the expressivity, succinctness, and complexity of a family of languages based on weighted propositional formulas for the representation of utility functions. The central idea underlying this form of preference modeling is to associate numerical weights with goals specified in terms of propositional formulas, and to compute the utility value of an alternative as the sum of the weights of the goals it satisfies. We define a large number of representation languages based on this idea, each characterized by a set of restrictions on the syntax of formulas and the range of weights. Our aims are threefold. First, for each language we try to identify the class of utility functions it can express. Second, when different languages can express the same class of utility functions, one may allow for a more succinct representation than another. Therefore, we analyze the relative succinctness of languages. Third, for each language we study the computational complexity of the problem of finding the most preferred alternative given a utility function expressed in that language
dc.relation.isversionofjnlnameMathematical Logic Quarterly
dc.relation.isversionofjnlvol55
dc.relation.isversionofjnlissue4
dc.relation.isversionofjnldate2009
dc.relation.isversionofjnlpages341-361
dc.relation.isversionofdoihttp://dx.doi.org/10.1002/malq.200810024
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherJohann Ambrosius Barth
dc.subject.ddclabelProbabilités et mathématiques appliquéesen
dc.description.ssrncandidatenon
dc.description.halcandidateoui
dc.description.readershiprecherche
dc.description.audienceInternational
dc.relation.Isversionofjnlpeerreviewedoui
dc.date.updated2017-09-29T16:32:24Z


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record