Show simple item record

dc.contributor.authorBerger, Quentin
dc.contributor.authorPoisat, Julien
dc.date.accessioned2016-07-20T16:41:20Z
dc.date.available2016-07-20T16:41:20Z
dc.date.issued2015
dc.identifier.issn1083-6489
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/15680
dc.language.isoenen
dc.subjectPinning Modelen
dc.subjectCopolymer Modelen
dc.subjectCritical Curveen
dc.subjectFractional Momentsen
dc.subjectCoarseGrainingen
dc.subjectCorrelationsen
dc.subject.ddc515en
dc.titleOn the critical curves of the pinning and copolymer models in correlated Gaussian environmenten
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenWe investigate the disordered copolymer and pinning models, in the case of a correlated Gaussian environment with correlations, and when the return distribution of the underlying renewal process has a polynomial tail. As far as the copolymer model is concerned, we prove disorder relevance both in terms of critical points and critical exponents, in the case of non-negative correlations. When some of the correlations are negative, even the annealed model becomes non-trivial. Moreover, when the return distribution has a finite mean, we are able to compute the weak coupling limit of the critical curves for both models, with no restriction on the correlations other than summability. This generalizes the result of Berger,Caravennale, Poisat, Sun and Zygouras to the correlated case. Interestingly, in the copolymer model, the weak coupling limit of the critical curve turns out to be the maximum of two quantities: one generalizing the limit found in the IID case, the other one generalizing the so-called Monthus bound.en
dc.relation.isversionofjnlnameElectronic Journal of Probability
dc.relation.isversionofjnlvol20en
dc.relation.isversionofjnldate2015
dc.relation.isversionofjnlpagesn°71en
dc.relation.isversionofdoi10.1214/EJP.v20-3514en
dc.identifier.urlsitehttp://arxiv.org/abs/1404.5939v1en
dc.relation.isversionofjnlpublisherInstitute of Mathematical Statisticsen
dc.subject.ddclabelAnalyseen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen
dc.description.ssrncandidatenonen
dc.description.halcandidatenonen
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.relation.Isversionofjnlpeerreviewedouien
dc.relation.Isversionofjnlpeerreviewedouien
dc.date.updated2016-07-18T11:30:45Z
hal.person.labIds102
hal.person.labIds60


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record