• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

On minimal two-edge-connected graphs

Thumbnail
Date
2014
Dewey
Recherche opérationnelle
Sujet
Two-edge-connected; branch-and-cut; polyhedral approach; separation problem
DOI
http://dx.doi.org/10.1109/CoDIT.2014.6996902
Conference name
2014 International Conference on Control, Decision and Information Technologies (CoDIT)
Conference date
11-2014
Conference city
Metz
Conference country
France
Book title
2014 International Conference on Control, Decision and Information Technologies (CoDIT). Proceedings
Publisher
IEEE
Publisher city
Piscataway, NJ
Year
2014
ISBN
978-1-4799-6773-5
URI
https://basepub.dauphine.fr/handle/123456789/15664
Collections
  • LAMSADE : Publications
Metadata
Show full item record
Author
Cornaz, Denis
989 Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Magnouche, Youcef
989 Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Mahjoub, Ali Ridha
989 Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Type
Communication / Conférence
Item number of pages
251-256
Abstract (EN)
Given G = (V;E) an undirected graph and a nonnegative cost function c : E → ℚ, the 2-edge connected spanning subgraph problem (TECSP for short) is to find a two-edge connected subgraph HP = (V; F) of G with minimum cost (i.e., c(F) = Σe∈F c(e) is minimum). If c(e) > 0 for all e ∈ E then every optimal solution for TECSP is an inclusionwise minimal two-edge connected subgraph. In this paper we provide preliminary results, from a polyhedral point of view, concerning the inclusionwise minimal solutions of TECSP. This problem is clearly NP-Hard. We propose an ILP formulation for the problem and study the associated polytope for the wheels. Morever, we describe some valid inequalities and propose a branch-and-cut algorithm for the problem.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.