• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Polyhedral Approaches

Mahjoub, Ali Ridha (2014), Polyhedral Approaches, in Paschos, Vangelis, Concepts of Combinatorial Optimization, John Wiley & Sons, Inc., p. 261-324. 10.1002/9781119005216.ch10

Type
Chapitre d'ouvrage
Date
2014
Book title
Concepts of Combinatorial Optimization
Book author
Paschos, Vangelis
Publisher
John Wiley & Sons, Inc.
ISBN
9781119005216
Pages
261-324
Publication identifier
10.1002/9781119005216.ch10
Metadata
Show full item record
Author(s)
Mahjoub, Ali Ridha
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
This chapter discusses polyhedral approaches in combinatorial optimization. Using a cutting-plane algorithm, it is possible that an optimal solution of the problem will not be obtained. The chapter introduces the basic elements of polyhedral theory. It discusses the relationship between combinatorial optimization and linear programming. The chapter focuses on some proof techniques for polyhedra, in particular it introduce methods for proving that a given inequality defines a facet of a combinatorial polyhedron, and that a linear system describes an integer polyhedron. The chapter discusses integer polyhedra and min–max relationships in combinatorial optimization. In particular, totally unimodular matrices, totally dual integral systems, and blocking and antiblocking polyhedra. The chapter examines cut, and branch-and-cut, methods and the relationship between separation and optimization. It presents some applications of these techniques to the maximum cut and survivable network design problems.
Subjects / Keywords
combinatorial optimization; cutting-plane algorithm; linear programming; polyhedral approaches; proof techniques

Related items

Showing items related by title and author.

  • Thumbnail
    The k-node connected subgraph problem: Polyhedral analysis and Branch-and-Cut 
    Diarrassouba, Ibrahima; Mahjoub, Meriem; Mahjoub, Ali Ridha; Taktak, Raouia (2016) Article accepté pour publication ou publié
  • Thumbnail
    k-node-disjoint hop-constrained survivable networks: polyhedral analysis and branch and cut 
    Diarrassouba, Ibrahima; Mahjoub, Meriem; Mahjoub, Ali Ridha; Yaman, Hande (2016) Article accepté pour publication ou publié
  • Thumbnail
    The multi-terminal vertex separator problem: Polyhedral analysis and Branch-and-Cut 
    Cornaz, Denis; Magnouche, Youcef; Mahjoub, Ali Ridha; Martin, Sébastien (2019) Article accepté pour publication ou publié
  • Thumbnail
    Polyhedral Analysis and Branch-and-Cut for the Structural Analysis Problem 
    Lacroix, Mathieu; Mahjoub, Ali Ridha; Martin, Sébastien (2012) Communication / Conférence
  • Thumbnail
    Polyhedral results for the bipartite induced subgraph problem 
    Fouilhoux, Pierre; Mahjoub, Ali Ridha (2006) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo