• français
    • English
  • français 
    • français
    • English
  • Connexion
JavaScript is disabled for your browser. Some features of this site may not work without it.
Accueil

Afficher

Cette collectionPar Date de CréationAuteursTitresSujetsNoms de revueToute la baseCentres de recherche & CollectionsPar Date de CréationAuteursTitresSujetsNoms de revue

Mon compte

Connexion

Statistiques

Afficher les statistiques d'usage

Modélisation mathématique et numérique des comportements sociaux en milieu incertain. Application à l'épidémiologie

Mathematical and numerical modeling of social behavior in an uncertain environment

Thumbnail
Ouvrir
2015PA090058.pdf (2.923Mb)
Date
2015-11
Indexation documentaire
Probabilités et mathématiques appliquées
Subject
Immunité de groupe et rapport coût / efficacité; Région de vaccination; Modèle SIR; Vaccination optimale
URI
https://basepub.dauphine.fr/handle/123456789/15526
Collections
  • CEREMADE : Thèses
Métadonnées
Afficher la notice complète
Auteur
Laguzet, Laetitia
Directeur de thèse
Turinici, Gabriel
Type
Thèse
Résumé en français
Cette thèse propose une étude mathématique des stratégies de vaccination.La partie I présente le cadre mathématique, notamment le modèle à compartiments Susceptible - Infected – Recovered.La partie II aborde les techniques mathématiques de type contrôle optimal employées afin de trouver une stratégie optimale de vaccination au niveau de la société. Ceci se fait en minimisant le coût de la société. Nous montrons que la fonction valeur associée peut avoir une régularité plus faible que celle attendue dans la littérature. Enfin, nous appliquons les résultats à la vaccination contre la coqueluche.La partie III présente un modèle où le coût est défini au niveau de l'individu. Nous reformulons le problème comme un équilibre de Nash et comparons le coût obtenu avec celui de la stratégie sociétale. Une application à la grippe A(H1N1) indique la présence de perceptions différentes liées à la vaccination.La partie IV propose une implémentation numérique directe des stratégies présentées
Résumé en anglais
This thesis propose a mathematical analysis of the vaccination strategies.The first part introduces the mathematical framework, in particular the Susceptible – Infected – Recovered compartmental model.The second part introduces the optimal control tools used to find an optimal vaccination strategy from the societal point of view, which is a minimizer of the societal cost. We show that the associated value function can have a less regularity than what was assumed in the literature. These results are then applied to the vaccination against the whooping cough.The third part defines a model where the cost is defined at the level of the individual. We rephrase this problem as a Nash equilibrium and compare this results with the societal strategy. An application to the Influenza A(H1N1) 2009-10 indicates the presence of inhomogeneous perceptions concerning the vaccination risks.The fourth and last part proposes a direct numerical implementation of the different strategies

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Cette création est mise à disposition sous un contrat Creative Commons.