• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Aide
  • Connexion
  • Langue 
    • Français
    • English
Consulter le document 
  •   Accueil
  • LEDa (UMR CNRS 8007, UMR IRD 260)
  • LEDa : Publications
  • Consulter le document
  •   Accueil
  • LEDa (UMR CNRS 8007, UMR IRD 260)
  • LEDa : Publications
  • Consulter le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Afficher

Toute la baseCentres de recherche & CollectionsAnnée de publicationAuteurTitreTypeCette collectionAnnée de publicationAuteurTitreType

Mon compte

Connexion

Enregistrement

Statistiques

Documents les plus consultésStatistiques par paysAuteurs les plus consultés
Thumbnail - Request a copy

Forecasting electricity spot prices using time-series models with a double temporal segmentation

Bessec, Marie; Fouquau, Julien; Méritet, Sophie (2016), Forecasting electricity spot prices using time-series models with a double temporal segmentation, Applied Economics, 48, 5, p. 361-378. 10.1080/00036846.2015.1080801

Type
Article accepté pour publication ou publié
Date
2016
Nom de la revue
Applied Economics
Volume
48
Numéro
5
Éditeur
Chapman and Hall
Pages
361-378
Identifiant publication
10.1080/00036846.2015.1080801
Métadonnées
Afficher la notice complète
Auteur(s)
Bessec, Marie

Fouquau, Julien
ESCP-EAP
Méritet, Sophie
Résumé (EN)
The French wholesale market is set to expand in the next few years under European pressure and national decisions. In this article, we assess the forecasting ability of several classes of time-series models for electricity wholesale spot prices at a day-ahead horizon in France. Electricity spot prices display a strong seasonal pattern, particularly in France, given the high share of electric heating in housing during winter time. To deal with this pattern, we implement a double temporal segmentation of the data. For each trading period and season, we use a large number of specifications based on market fundamentals: linear regressions, Markov-switching (MS) models and threshold models with a smooth transition. An extensive evaluation on French data shows that modelling each season independently leads to better results. Among nonlinear models, MS models designed to capture the sudden and fast-reverting spikes in the price dynamics yield more accurate forecasts. Finally, pooling forecasts give more reliable results.
Mots-clés
Forecasting; electricity spot prices; seasonality; regime-switching; combinations
JEL
C22 - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
C53 - Forecasting and Prediction Methods; Simulation Methods
L94 - Electric Utilities

Publications associées

Affichage des éléments liés par titre et auteur.

  • Vignette de prévisualisation
    Forecasting electricity spot prices using time-series models with a double temporal segmentation 
    Fouquau, Julien; Bessec, Marie; Méritet, Sophie (2014) Communication / Conférence
  • Vignette de prévisualisation
    Short-run electricity load forecasting with combinations of stationary wavelet transforms 
    Bessec, Marie; Fouquau, Julien (2018) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Electricity spot price modelling : univariate time series approach 
    Bourbonnais, Régis; Méritet, Sophie (2007) Chapitre d'ouvrage
  • Vignette de prévisualisation
    The Non-Linear Link between Electricity Consumption and Temperature in Europe : A Threshold Panel Approach 
    Fouquau, Julien; Bessec, Marie (2008-09) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Short-term forecasting of French GDP growth using dynamic factor models 
    Bessec, Marie; Doz, Catherine (2014) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Tél. : 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo