• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

On the representation of the search region in multi-objective optimization

Klamroth, Kathrin; Lacour, Renaud; Vanderpooten, Daniel (2015), On the representation of the search region in multi-objective optimization, European Journal of Operational Research, 245, 3, p. 767-778. 10.1016/j.ejor.2015.03.031

Type
Article accepté pour publication ou publié
External document link
http://arxiv.org/abs/1502.06111
Date
2015
Journal name
European Journal of Operational Research
Volume
245
Number
3
Pages
767-778
Publication identifier
10.1016/j.ejor.2015.03.031
Metadata
Show full item record
Author(s)
Klamroth, Kathrin
Lacour, Renaud
Vanderpooten, Daniel
Abstract (EN)
Given a finite set N of feasible points of a multi-objective optimization (MOO) problem, the search region corresponds to the part of the objective space containing all the points that are not dominated by any point of N, i.e. the part of the objective space which may contain further nondominated points. In this paper, we consider a representation of the search region by a set of tight local upper bounds (in the minimization case) that can be derived from the points of N. Local upper bounds play an important role in methods for generating or approximating the nondominated set of an MOO problem, yet few works in the field of MOO address their efficient incremental determination. We relate this issue to the state of the art in computational geometry and provide several equivalent definitions of local upper bounds that are meaningful in MOO. We discuss the complexity of this representation in arbitrary dimension, which yields an improved upper bound on the number of solver calls in epsilon-constraint-like methods to generate the nondominated set of a discrete MOO problem. We analyze and enhance a first incremental approach which operates by eliminating redundancies among local upper bounds. We also study some properties of local upper bounds, especially concerning the issue of redundant local upper bounds, that give rise to a new incremental approach which avoids such redundancies. Finally, the complexities of the incremental approaches are compared from the theoretical and empirical points of view.
Subjects / Keywords
local upper bounds; Multiple objective programming; generic solution approaches; search region

Related items

Showing items related by title and author.

  • Thumbnail
    Efficient computation of the search region in multi-objective optimization 
    Dächert, Kerstin; Klamroth, Kathrin; Lacour, Renaud; Vanderpooten, Daniel (2017) Article accepté pour publication ou publié
  • Thumbnail
    Approches de résolution exacte et approchée en optimisation combinatoire multi-objectif, application au problème de l'arbre couvrant de poids minimal 
    Lacour, Renaud (2014-07) Thèse
  • Thumbnail
    Discrete representation of the non-dominated set for multi-objective optimization problems using kernels 
    Bazgan, Cristina; Jamain, Florian; Vanderpooten, Daniel (2017) Article accepté pour publication ou publié
  • Thumbnail
    Approches efficaces avec garantie a priori pour le problème de l’arbre couvrant multi-objectif 
    Lacour, Renaud; Vanderpooten, Daniel (2012) Communication / Conférence
  • Thumbnail
    Représentations discrètes de l'ensemble des points non dominés pour des problèmes d'optimisation multi-objectifs 
    Jamain, Florian (2014-06) Thèse
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo