
A matroid approach to the worst case allocation of indivisible goods
Gourvès, Laurent; Monnot, Jérôme; Tlilane, Lydia (2013), A matroid approach to the worst case allocation of indivisible goods, dans Rossi, Francesca, IJCAI '13 Proceedings of the Twenty-Third international joint conference on Artificial Intelligence, AAAI Press, p. 136-142
Voir/Ouvrir
Type
Communication / ConférenceDate
2013Titre du colloque
23rd international joint conference on Artificial Intelligence (IJCAI 2013)Date du colloque
2013-08Ville du colloque
BeijingPays du colloque
ChinaTitre de l'ouvrage
IJCAI '13 Proceedings of the Twenty-Third international joint conference on Artificial IntelligenceAuteurs de l’ouvrage
Rossi, FrancescaÉditeur
AAAI Press
Isbn
978-1-57735-633-2
Pages
136-142
Métadonnées
Afficher la notice complèteAuteur(s)
Gourvès, LaurentLaboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Monnot, Jérôme

Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Tlilane, Lydia
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Résumé (EN)
We consider the problem of equitably allocating a set of indivisible goods to n agents so as to maximize the utility of the least happy agent. [Demko and Hill, 1988] showed the existence of an allocation where every agent values his share at least Vn(α), which is a family of nonincreasing functions in a parameter α, defined as the maximum value assigned by an agent to a single good. A deterministic algorithm returning such an allocation in polynomial time was proposed [Markakis and Psomas, 2011]. Interestingly, Vn(α) is tight for some values of α, i.e. it is the best lower bound on the valuation of the least happy agent. However, it is not true for all values of α. We propose a family of functions Wn such that Wn(x) ≥ Vn(x) for all x, and Wn(x) > Vn(x) for values of x where Vn(x) is not tight. The new functions Wn apply on a problem which generalizes the allocation of indivisible goods. It is to find a solution (base) in a matroid which is common to n agents. Our results are constructive, they are achieved by analyzing an extension of the algorithm of Markakis and Psomas.Mots-clés
matroids; indivisible goodsPublications associées
Affichage des éléments liés par titre et auteur.
-
Gourvès, Laurent; Monnot, Jérôme; Tlilane, Lydia (2015) Article accepté pour publication ou publié
-
Ferraioli, Diodato; Gourvès, Laurent; Monnot, Jérôme (2014) Communication / Conférence
-
Gourvès, Laurent; Monnot, Jérôme; Tlilane, Lydia (2013) Communication / Conférence
-
Gourvès, Laurent; Monnot, Jérôme; Tlilane, Lydia (2012) Communication / Conférence