• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

A matroid approach to the worst case allocation of indivisible goods

Gourvès, Laurent; Monnot, Jérôme; Tlilane, Lydia (2013), A matroid approach to the worst case allocation of indivisible goods, in Rossi, Francesca, IJCAI '13 Proceedings of the Twenty-Third international joint conference on Artificial Intelligence, AAAI Press, p. 136-142

View/Open
IJCAI13-030.pdf (560.0Kb)
Type
Communication / Conférence
Date
2013
Conference title
23rd international joint conference on Artificial Intelligence (IJCAI 2013)
Conference date
2013-08
Conference city
Beijing
Conference country
China
Book title
IJCAI '13 Proceedings of the Twenty-Third international joint conference on Artificial Intelligence
Book author
Rossi, Francesca
Publisher
AAAI Press
ISBN
978-1-57735-633-2
Pages
136-142
Metadata
Show full item record
Author(s)
Gourvès, Laurent
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Monnot, Jérôme cc
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Tlilane, Lydia
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
We consider the problem of equitably allocating a set of indivisible goods to n agents so as to maximize the utility of the least happy agent. [Demko and Hill, 1988] showed the existence of an allocation where every agent values his share at least Vn(α), which is a family of nonincreasing functions in a parameter α, defined as the maximum value assigned by an agent to a single good. A deterministic algorithm returning such an allocation in polynomial time was proposed [Markakis and Psomas, 2011]. Interestingly, Vn(α) is tight for some values of α, i.e. it is the best lower bound on the valuation of the least happy agent. However, it is not true for all values of α. We propose a family of functions Wn such that Wn(x) ≥ Vn(x) for all x, and Wn(x) > Vn(x) for values of x where Vn(x) is not tight. The new functions Wn apply on a problem which generalizes the allocation of indivisible goods. It is to find a solution (base) in a matroid which is common to n agents. Our results are constructive, they are achieved by analyzing an extension of the algorithm of Markakis and Psomas.
Subjects / Keywords
matroids; indivisible goods

Related items

Showing items related by title and author.

  • Thumbnail
    Worst case compromises in matroids with applications to the allocation of indivisible goods 
    Gourvès, Laurent; Monnot, Jérôme; Tlilane, Lydia (2015) Article accepté pour publication ou publié
  • Thumbnail
    Les matroïdes et leur implication dans l'allocation de ressources indivisibles : algorithmes d'approximation avec garantie de performance 
    Tlilane, Lydia (2014-11) Thèse
  • Thumbnail
    On regular and approximately fair allocations of indivisible goods 
    Ferraioli, Diodato; Gourvès, Laurent; Monnot, Jérôme (2014) Communication / Conférence
  • Thumbnail
    Approximation du point idéal dans des matroïdes: bornes et algorithmes 
    Gourvès, Laurent; Monnot, Jérôme; Tlilane, Lydia (2013) Communication / Conférence
  • Thumbnail
    Approximate Tradeoffs on Matroids 
    Gourvès, Laurent; Monnot, Jérôme; Tlilane, Lydia (2012) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo