
A matroid approach to the worst case allocation of indivisible goods
Gourvès, Laurent; Monnot, Jérôme; Tlilane, Lydia (2013), A matroid approach to the worst case allocation of indivisible goods, in Rossi, Francesca, IJCAI '13 Proceedings of the Twenty-Third international joint conference on Artificial Intelligence, AAAI Press, p. 136-142
View/ Open
Type
Communication / ConférenceDate
2013Conference title
23rd international joint conference on Artificial Intelligence (IJCAI 2013)Conference date
2013-08Conference city
BeijingConference country
ChinaBook title
IJCAI '13 Proceedings of the Twenty-Third international joint conference on Artificial IntelligenceBook author
Rossi, FrancescaPublisher
AAAI Press
ISBN
978-1-57735-633-2
Pages
136-142
Metadata
Show full item recordAuthor(s)
Gourvès, LaurentLaboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Monnot, Jérôme

Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Tlilane, Lydia
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
We consider the problem of equitably allocating a set of indivisible goods to n agents so as to maximize the utility of the least happy agent. [Demko and Hill, 1988] showed the existence of an allocation where every agent values his share at least Vn(α), which is a family of nonincreasing functions in a parameter α, defined as the maximum value assigned by an agent to a single good. A deterministic algorithm returning such an allocation in polynomial time was proposed [Markakis and Psomas, 2011]. Interestingly, Vn(α) is tight for some values of α, i.e. it is the best lower bound on the valuation of the least happy agent. However, it is not true for all values of α. We propose a family of functions Wn such that Wn(x) ≥ Vn(x) for all x, and Wn(x) > Vn(x) for values of x where Vn(x) is not tight. The new functions Wn apply on a problem which generalizes the allocation of indivisible goods. It is to find a solution (base) in a matroid which is common to n agents. Our results are constructive, they are achieved by analyzing an extension of the algorithm of Markakis and Psomas.Subjects / Keywords
matroids; indivisible goodsRelated items
Showing items related by title and author.
-
Gourvès, Laurent; Monnot, Jérôme; Tlilane, Lydia (2015) Article accepté pour publication ou publié
-
Ferraioli, Diodato; Gourvès, Laurent; Monnot, Jérôme (2014) Communication / Conférence
-
Gourvès, Laurent; Monnot, Jérôme; Tlilane, Lydia (2013) Communication / Conférence
-
Gourvès, Laurent; Monnot, Jérôme; Tlilane, Lydia (2012) Communication / Conférence