Show simple item record

dc.contributor.authorPrandi, Dario
HAL ID: 3491
ORCID: 0000-0002-8156-5526
dc.contributor.authorBoscain, Ugo
HAL ID: 742311
ORCID: 0000-0001-5450-275X
dc.contributor.authorGauthier, Jean-Paul
dc.date.accessioned2015-04-08T09:50:12Z
dc.date.available2015-04-08T09:50:12Z
dc.date.issued2015
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/14907
dc.descriptionLNCS n°9389
dc.language.isoenen
dc.subjectImage processing
dc.subject.ddc621.3en
dc.titleImage processing in the semidiscrete group of rototranslations
dc.typeCommunication / Conférence
dc.contributor.editoruniversityotherLSIS, Université de Toulon USTV, 8;France
dc.contributor.editoruniversityotherCMAP, Ecole Polytechnique,;France
dc.description.abstractenIt is well-known, since [12], that cells in the primary visual cortex V1 do much more than merely signaling position in the visual field: most cortical cells signal the local orientation of a contrast edge or bar – they are tuned to a particular local orientation. This orientation tuning has been given a mathematical interpretation in a sub-Riemannian model by Petitot, Citti, and Sarti [6, 14]. According to this model, the primary visual cortex V1 lifts grey-scale images, given as functions f:R2→[0,1], to functions Lf defined on the projectivized tangent bundle of the plane PTR2=R2×P1. Recently, in [1], the authors presented a promising semidiscrete variant of this model where the Euclidean group of rototranslations SE(2), which is the double covering of PTR2, is replaced by SE(2, N), the group of translations and discrete rotations. In particular, in [15], an implementation of this model allowed for state-of-the-art image inpaintings.In this work, we review the inpainting results and introduce an application of the semidiscrete model to image recognition. We remark that both these applications deeply exploit the Moore structure of SE(2, N) that guarantees that its unitary representations behaves similarly to those of a compact group. This allows for nice properties of the Fourier transform on SE(2, N) exploiting which one obtains numerical advantages.
dc.publisher.cityParisen
dc.identifier.citationpages627-634
dc.relation.ispartoftitleGeometric Science of Information Second International Conference, GSI 2015, Palaiseau, France, October 28-30, 2015, Proceedings
dc.relation.ispartofeditorFrank Nielsen, Frédéric Barbaresco
dc.relation.ispartofpublnameSpringer
dc.relation.ispartofpublcityBerlin Heidelberg
dc.relation.ispartofdate2015
dc.relation.ispartofurl10.1007/978-3-319-25040-3
dc.subject.ddclabelTraitement du signalen
dc.relation.ispartofisbn978-3-319-25039-7
dc.description.submittednonen
dc.identifier.doi10.1007/978-3-319-25040-3_67
dc.description.ssrncandidatenon
dc.description.halcandidateoui
dc.description.readershiprecherche
dc.description.audienceInternational
dc.date.updated2017-03-07T10:08:57Z


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record