Show simple item record

hal.structure.identifierCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
dc.contributor.authorArmstrong, Scott N.*
hal.structure.identifierDepartment of Mathematics [Chicago]
dc.contributor.authorTran, Hung V.*
hal.structure.identifierDepartment of Mathematics [Univ California Davis] [MATH - UC Davis]
dc.contributor.authorYu, Yifeng*
dc.date.accessioned2015-04-07T11:51:37Z
dc.date.available2015-04-07T11:51:37Z
dc.date.issued2015
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/14898
dc.language.isoenen
dc.subjectHamilton-Jacobi equationsen
dc.subject.ddc515en
dc.titleStochastic homogenization of a nonconvex Hamilton–Jacobi equationen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenWe present a proof of qualitative stochastic homogenization for a nonconvex Hamilton–Jacobi equations. The new idea is to introduce a family of “sub-equations” and to control solutions of the original equation by the maximal subsolutions of the latter, which have deterministic limits by the subadditive ergodic theorem and maximality.en
dc.relation.isversionofjnlnameCalculus of Variations and Partial Differential Equations
dc.relation.isversionofjnldate2015
dc.relation.isversionofdoihttp://dx.doi.org/10.1007/s00526-015-0833-2en
dc.identifier.urlsitehttps://arxiv.org/abs/1311.2029v1
dc.relation.isversionofjnlpublisherSpringeren
dc.subject.ddclabelAnalyseen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintouien
hal.author.functionaut
hal.author.functionaut
hal.author.functionaut


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record