Stochastic homogenization of a nonconvex Hamilton–Jacobi equation
Armstrong, Scott N.; Tran, Hung V.; Yu, Yifeng (2015), Stochastic homogenization of a nonconvex Hamilton–Jacobi equation, Calculus of Variations and Partial Differential Equations. http://dx.doi.org/10.1007/s00526-015-0833-2
Type
Article accepté pour publication ou publiéExternal document link
https://arxiv.org/abs/1311.2029v1Date
2015Journal name
Calculus of Variations and Partial Differential EquationsPublisher
Springer
Publication identifier
Metadata
Show full item recordAuthor(s)
Armstrong, Scott N.CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Tran, Hung V.
Department of Mathematics [Chicago]
Yu, Yifeng
Department of Mathematics [Univ California Davis] [MATH - UC Davis]
Abstract (EN)
We present a proof of qualitative stochastic homogenization for a nonconvex Hamilton–Jacobi equations. The new idea is to introduce a family of “sub-equations” and to control solutions of the original equation by the maximal subsolutions of the latter, which have deterministic limits by the subadditive ergodic theorem and maximality.Subjects / Keywords
Hamilton-Jacobi equationsRelated items
Showing items related by title and author.
-
Armstrong, Scott N.; Tran, Hung V.; Yu, Yifeng (2016) Article accepté pour publication ou publié
-
Armstrong, Scott N.; Tran, Hung V. (2014) Article accepté pour publication ou publié
-
Error estimates and convergence rates for the stochastic homogenization of Hamilton-Jacobi equations Armstrong, Scott N.; Cardaliaguet, Pierre; Souganidis, Panagiotis E. (2014) Article accepté pour publication ou publié
-
Armstrong, Scott N.; Cardaliaguet, Pierre (2018) Article accepté pour publication ou publié
-
Cardaliaguet, Pierre; Armstrong, Scott N. (2015) Article accepté pour publication ou publié