• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Augmented Lagrangian Methods for Transport Optimization, Mean Field Games and Degenerate Elliptic Equations

Benamou, Jean-David; Carlier, Guillaume (2015), Augmented Lagrangian Methods for Transport Optimization, Mean Field Games and Degenerate Elliptic Equations, Journal of Optimization Theory and Applications, 167, 1, p. 1-26. http://dx.doi.org/10.1007/s10957-015-0725-9

Type
Article accepté pour publication ou publié
External document link
https://hal.inria.fr/hal-01073143
Date
2015
Journal name
Journal of Optimization Theory and Applications
Volume
167
Number
1
Publisher
Springer
Pages
1-26
Publication identifier
http://dx.doi.org/10.1007/s10957-015-0725-9
Metadata
Show full item record
Author(s)
Benamou, Jean-David
Carlier, Guillaume
Abstract (EN)
Many problems from mass transport can be reformulated as variational problems under a prescribed divergence constraint (static problems) or subject to a time-dependent continuity equation, which again can be formulated as a divergence constraint but in time and space. The variational class of mean field games, introduced by Lasry and Lions, may also be interpreted as a generalization of the time-dependent optimal transport problem. Following Benamou and Brenier, we show that augmented Lagrangian methods are well suited to treat such convex but non-smooth problems. They include in particular Monge historic optimal transport problem. A finite-element discretization and implementation of the method are used to provide numerical simulations and a convergence study.
Subjects / Keywords
Optimal transport; Mean field games; Monge problem; Degenerate elliptic PDEs; Augmented Lagrangian

Related items

Showing items related by title and author.

  • Thumbnail
    An Augmented Lagrangian Numerical approach to solving Mean-Fields Games 
    Benamou, Jean-David; Carlier, Guillaume; Bonne, Nicolas (2013) Rapport
  • Thumbnail
    An augmented Lagrangian approach to Wasserstein gradient flows and applications 
    Benamou, Jean-David; Carlier, Guillaume; Laborde, Maxime (2016) Article accepté pour publication ou publié
  • Thumbnail
    Variational Mean Field Games 
    Benamou, Jean-David; Carlier, Guillaume; Santambrogio, Filippo (2017) Chapitre d'ouvrage
  • Thumbnail
    An entropy minimization approach to second-order variational mean-field games 
    Benamou, Jean-David; Carlier, Guillaume; Marino, Simone; Nenna, Luca (2019) Article accepté pour publication ou publié
  • Thumbnail
    A Numerical Method to Solve Multi-Marginal Optimal Transport Problems with Coulomb Cost 
    Benamou, Jean-David; Carlier, Guillaume; Nenna, Luca (2017) Chapitre d'ouvrage
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo