• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Optimal transport and the geometry of L1(Rd)

Ekeland, Ivar; Schachermayer, Walter (2014), Optimal transport and the geometry of L1(Rd), Proceedings of the American Mathematical Society, 142, p. 3585-3596. http://dx.doi.org/10.1090/S0002-9939-2014-12094-6

View/Open
11-07-22-Schachermaye.pdf (179.9Kb)
Type
Article accepté pour publication ou publié
Date
2014
Journal name
Proceedings of the American Mathematical Society
Volume
142
Publisher
AMS
Pages
3585-3596
Publication identifier
http://dx.doi.org/10.1090/S0002-9939-2014-12094-6
Metadata
Show full item record
Author(s)
Ekeland, Ivar
Schachermayer, Walter
Abstract (EN)
A classical theorem due to R. Phelps states that if $ C$ is a weakly compact set in a Banach space $ E$, the strongly exposing functionals form a dense subset of the dual space $ E^{\prime }$. In this paper, we look at the concrete situation where $ C\subset L^{1}(\mathbb{R}^{d})$ is the closed convex hull of the set of random variables $ Y\in L^{1}(\mathbb{R}^{d})$ having a given law $ \nu $. Using the theory of optimal transport, we show that every random variable $ X\in L^{\infty }(\mathbb{R}^{d})$, the law of which is absolutely continuous with respect to the Lebesgue measure, strongly exposes the set $ C$. Of course these random variables are dense in $ L^{\infty }(\mathbb{R}^{d})$
Subjects / Keywords
Transport

Related items

Showing items related by title and author.

  • Thumbnail
    Law invariant risk measures on L∞ (ℝd) 
    Ekeland, Ivar; Schachermayer, Walter (2011) Article accepté pour publication ou publié
  • Thumbnail
    Optimal transportation and the structure of cities 
    Ekeland, Ivar; Carlier, Guillaume (2003) Document de travail / Working paper
  • Thumbnail
    Optimal transportation and the falsifiability of incompletely specified economic models 
    Ekeland, Ivar; Galichon, Alfred; Henry, Marc (2010) Article accepté pour publication ou publié
  • Thumbnail
    Optimal pits and optimal transportation 
    Ekeland, Ivar; Queyranne, Maurice (2015) Article accepté pour publication ou publié
  • Thumbnail
    Optimal Risk Sharing for Law Invariant Monetary Utility Functions 
    Jouini, Elyès; Schachermayer, Walter; Touzi, Nizar (2008) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo