
Optimal transport and the geometry of L1(Rd)
Ekeland, Ivar; Schachermayer, Walter (2014), Optimal transport and the geometry of L1(Rd), Proceedings of the American Mathematical Society, 142, p. 3585-3596. http://dx.doi.org/10.1090/S0002-9939-2014-12094-6
View/ Open
Type
Article accepté pour publication ou publiéDate
2014Journal name
Proceedings of the American Mathematical SocietyVolume
142Publisher
AMS
Pages
3585-3596
Publication identifier
Metadata
Show full item recordAbstract (EN)
A classical theorem due to R. Phelps states that if $ C$ is a weakly compact set in a Banach space $ E$, the strongly exposing functionals form a dense subset of the dual space $ E^{\prime }$. In this paper, we look at the concrete situation where $ C\subset L^{1}(\mathbb{R}^{d})$ is the closed convex hull of the set of random variables $ Y\in L^{1}(\mathbb{R}^{d})$ having a given law $ \nu $. Using the theory of optimal transport, we show that every random variable $ X\in L^{\infty }(\mathbb{R}^{d})$, the law of which is absolutely continuous with respect to the Lebesgue measure, strongly exposes the set $ C$. Of course these random variables are dense in $ L^{\infty }(\mathbb{R}^{d})$Subjects / Keywords
TransportRelated items
Showing items related by title and author.
-
Ekeland, Ivar; Schachermayer, Walter (2011) Article accepté pour publication ou publié
-
Ekeland, Ivar; Carlier, Guillaume (2003) Document de travail / Working paper
-
Ekeland, Ivar; Galichon, Alfred; Henry, Marc (2010) Article accepté pour publication ou publié
-
Ekeland, Ivar; Queyranne, Maurice (2015) Article accepté pour publication ou publié
-
Jouini, Elyès; Schachermayer, Walter; Touzi, Nizar (2008) Article accepté pour publication ou publié