Show simple item record

dc.contributor.authorSaint-Pierre, Patrick
dc.date.accessioned2015-01-22T09:18:40Z
dc.date.available2015-01-22T09:18:40Z
dc.date.issued1995
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/14595
dc.language.isoenen
dc.subjectmultivalued equationsen
dc.subjectNewton's methoden
dc.subjectequilibriaen
dc.subjecthomotopic methodsen
dc.subject.ddc515en
dc.titleNewton and other continuation methods for multivalued inclusionsen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenViability theory provides an efficient framework for looking for zeros of multivalued equations: 0 ∈F(x). The main idea is to consider solutions of a suitable differential inclusion, viable in graph ofF. The choice of the differential inclusion is guided necessarily by the fact that any solution should converge or go through a zero of the multivalued equation. We investigate here a new understanding of the well-known Newton's method, generalizing it to set-valued equations and set up a class of algorithms which involve generalization of some homotopic path algorithms.en
dc.relation.isversionofjnlnameSet-Valued Analysis
dc.relation.isversionofjnlvol3en
dc.relation.isversionofjnlissue2en
dc.relation.isversionofjnldate1995
dc.relation.isversionofjnlpages143-156en
dc.relation.isversionofdoihttp://dx.doi.org/10.1007/BF01038596en
dc.relation.isversionofjnlpublisherSpringeren
dc.subject.ddclabelAnalyseen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record