• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Stationary states of the nonlinear Dirac equation: A variational approach

Esteban, Maria J.; Séré, Eric (1995), Stationary states of the nonlinear Dirac equation: A variational approach, Communications in Mathematical Physics, 171, 2, p. 323-350. http://dx.doi.org/10.1007/BF02099273

Type
Article accepté pour publication ou publié
Date
1995
Journal name
Communications in Mathematical Physics
Volume
171
Number
2
Publisher
Springer
Pages
323-350
Publication identifier
http://dx.doi.org/10.1007/BF02099273
Metadata
Show full item record
Author(s)
Esteban, Maria J. cc
Séré, Eric
Abstract (EN)
In this paper we prove the existence of stationary solutions of some nonlinear Dirac equations. We do it by using a general variational technique. This enables us to consider nonlinearities which are not necessarily compatible with symmetry reductions.
Subjects / Keywords
nonlinear Dirac equations

Related items

Showing items related by title and author.

  • Thumbnail
    Stationary solutions of the Maxwell-Dirac and the Klein-Gordon-Dirac equations 
    Esteban, Maria J.; Georgiev, Vladimir; Séré, Eric (1996) Article accepté pour publication ou publié
  • Thumbnail
    Variational Methods in Relativistic Quantum Mechanics: New Approach to the Computation of Dirac Eigenvalues 
    Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2000) Communication / Conférence
  • Thumbnail
    Bound-state solutions of the Maxwell-Dirac and the Klein-Gordon-Dirac systems 
    Esteban, Maria J.; Georgiev, Vladimir; Séré, Eric (1996) Article accepté pour publication ou publié
  • Thumbnail
    A max-min principle for the ground state of the Dirac-Fock functional 
    Séré, Eric; Esteban, Maria J. (2002) Communication / Conférence
  • Thumbnail
    Solutions of the Dirac-Fock Equations for Atoms and Molecules 
    Esteban, Maria J.; Séré, Eric (1999) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo