Show simple item record

dc.contributor.authorDoyen, Luc
HAL ID: 181009
ORCID: 0000-0001-8272-6187
dc.date.accessioned2015-01-22T09:09:26Z
dc.date.available2015-01-22T09:09:26Z
dc.date.issued1995
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/14589
dc.language.isoenen
dc.subjectvision-based controlen
dc.subjectvisual servoingen
dc.subjectshape gradienten
dc.subjectmutational equationen
dc.subjectshape regulationen
dc.subjectshape Lyapunov functionen
dc.subjectHausdorff's distanceen
dc.subjectoptical flow equationsen
dc.subject.ddc519en
dc.titleMutational equations for shapes and vision-based controlen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenBasic idea of vision-based control in robotics is to include the vision system directly in the control servo loop of the robot. When images are binary, this problem corresponds to the control of the evolution of a geometric domain. The present paper proposes mathematical tools derived from shape analysis and optimization to study this problem in a quite general way, i.e., without any regularity assumptions or modelsa priori on the domains that we deal with. Indeed, despite the lackness of a vectorial structure, one can develop a differential calculus in the metric space of all non-empty compact subsets of a given domain ofR n , and adapt ideas and results of classical differential systems to study and control the evolution of geometric domains. For instance, a shape Lyapunov characterization allows to investigate the asymptotic behavior of these geometric domains using the notion of directional shape derivative. We apply this inR 2 to the visual servoing problem using the optical flow equations and some experimental simulations illustrate this approach.en
dc.relation.isversionofjnlnameJournal of Mathematical Imaging and Vision
dc.relation.isversionofjnlvol5en
dc.relation.isversionofjnlissue2en
dc.relation.isversionofjnldate1995
dc.relation.isversionofjnlpages99-109en
dc.relation.isversionofdoihttp://dx.doi.org/10.1007/BF01250522en
dc.relation.isversionofjnlpublisherSpringeren
dc.subject.ddclabelProbabilités et mathématiques appliquéesen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record