• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Bounding the Norm of a Log-Concave Vector Via Thin-Shell Estimates

Eldan, Ronen; Lehec, Joseph (2014), Bounding the Norm of a Log-Concave Vector Via Thin-Shell Estimates, in Bo'az Klartag, Emanuel Milman, Geometric Aspects of Functional Analysis. Israel Seminar (GAFA) 2011-2013, Springer : Berlin Heidelberg, p. 107-122. 10.1007/978-3-319-09477-9_9

Type
Chapitre d'ouvrage
External document link
https://arxiv.org/abs/1306.3696v2
Date
2014
Book title
Geometric Aspects of Functional Analysis. Israel Seminar (GAFA) 2011-2013
Book author
Bo'az Klartag, Emanuel Milman
Publisher
Springer
Published in
Berlin Heidelberg
Paris
ISBN
978-3-319-09476-2
Pages
107-122
Publication identifier
10.1007/978-3-319-09477-9_9
Metadata
Show full item record
Author(s)
Eldan, Ronen
Lehec, Joseph cc
Abstract (EN)
Chaining techniques show that if X is an isotropic log-concave random vector in R n and Γ is a standard Gaussian vector then EX ≤ Cn 1/4 EΓ for any norm · , where C is a universal constant. Using a completely different argument we establish a similar inequality relying on the thin-shell constant σn = sup Var(|X|); X isotropic and log-concave on R n . In particular, we show that if the thin-shell conjecture σn = O(1) holds, then n 1/4 can be replaced by log(n) in the inequality. As a consequence, we obtain certain bounds for the mean-width, the dual mean-width and the isotropic constant of an isotropic convex body. In particular, we give an alternative proof of the fact that a positive answer to the thin-shell conjecture implies a positive answer to the slicing problem, up to a logarithmic factor.
Subjects / Keywords
Gaussian vector; Thin-Shell Estimates; Chaining techniques

Related items

Showing items related by title and author.

  • Thumbnail
    Sampling from a log-concave distribution with Projected Langevin Monte Carlo 
    Bubeck, Sébastien; Eldan, Ronen; Lehec, Joseph (2017) Document de travail / Working paper
  • Thumbnail
    Sampling from a log-concave distribution with Projected Langevin Monte Carlo 
    Bubeck, Sébastien; Eldan, Ronen; Lehec, Joseph (2018) Article accepté pour publication ou publié
  • Thumbnail
    The Langevin Monte Carlo algorithm in the non-smooth log-concave case 
    Lehec, Joseph (2021) Document de travail / Working paper
  • Thumbnail
    Stability of the logarithmic Sobolev inequality via the Föllmer Process 
    Eldan, Ronen; Lehec, Joseph; Shenfeld, Yair (2020) Article accepté pour publication ou publié
  • Thumbnail
    Poisson processes and a log-concave Bernstein theorem 
    Klartag, Bo'az; Lehec, Joseph (2019) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo