• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

Résultats Positifs et Négatifs en Approximation et Complexité Paramétrée

Positive and Negative Results in Approximation and Parameterized Complexity

Thumbnail
View/Open
2014PA090040.pdf (2.040Mb)
Date
2014-11
Dewey
Approximation et développement en série
Sujet
Problèmes difficiles; Complexité paramétrée; Approximation; Sparsification; Hard problems; Parameterized complexity
URI
https://basepub.dauphine.fr/handle/123456789/14503
Collections
  • LAMSADE : Thèses
Metadata
Show full item record
Author
Bonnet, Édouard
989 Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Thesis supervisor
Paschos, Vangelis T.; Escoffier, Bruno
Type
Thèse
Item number of pages
156
Abstract (FR)
De nombreux problèmes de la vie réelle sont NP-Difficiles et ne peuvent pas être résolus en temps polynomial. Deux paradigmes notables pour les résoudre quand même sont: l'approximation et la complexité paramétrée. Dans cette thèse, on présente une nouvelle technique appelée "gloutonnerie-Pour-La-Paramétrisation". On l'utilise pour établir ou améliorer la complexité paramétrée de nombreux problèmes et également pour obtenir des algorithmes paramétrés pour des problèmes à cardinalité contrainte sur les graphes bipartis. En vue d'établir des résultats négatifs sur l'approximabilité en temps sous-Exponentiel et en temps paramétré, on introduit différentes méthodes de sparsification d'instances préservant l'approximation. On combine ces "sparsifieurs" à des réductions nouvelles ou déjà connues pour parvenir à nos fins. En guise de digestif, on présente des résultats de complexité de jeux comme le Bridge et Havannah.
Abstract (EN)
Several real-Life problems are NP-Hard and cannot be solved in polynomial time.The two main options to overcome this issue are: approximation and parameterized complexity. In this thesis, we present a new technique called greediness-For-Parameterization and we use it to improve the parameterized complexity of many problems. We also use this notion to obtain parameterized algorithms for some problems in bipartite graphs. Aiming at establishing negative results on the approximability in subexponential time and in parameterized time, we introduce new methods of sparsification that preserves approximation. We combine those "sparsifiers" with known or new reductions to achieve our goal. Finally, we present some hardness results of games such as Bridge and Havannah.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.