• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

Approximate Pareto sets of minimal size for multi-objective optimization problems

Thumbnail
View/Open
article_orl.pdf (106.1Kb)
Date
2015
Dewey
Recherche opérationnelle
Sujet
Pareto set; Multi-objective optimization; Greedy algorithm; Approximation algorithm; Non-dominated points
Journal issue
Operations Research Letters
Volume
43
Number
1
Publication date
2015
Article pages
1-6
Publisher
Elsevier
DOI
http://dx.doi.org/10.1016/j.orl.2014.10.003
URI
https://basepub.dauphine.fr/handle/123456789/14476
Collections
  • LAMSADE : Publications
Metadata
Show full item record
Author
Bazgan, Cristina
989 Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Jamain, Florian
989 Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Vanderpooten, Daniel
989 Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Type
Article accepté pour publication ou publié
Abstract (EN)
We are interested in a problem introduced by Vassilvitskii and Yannakakis (2005), the computation of a minimum set of solutions that approximates within an accuracy εε the Pareto set of a multi-objective optimization problem. We mainly establish a new 3-approximation algorithm for the bi-objective case. We also propose a study of the greedy algorithm performance for the tri-objective case when the points are given explicitly, answering an open question raised by Koltun and Papadimitriou in (2007).

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.