• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Improved predictability of two-dimensional turbulent flows using wavelet packet compression

Farge, Marie; Goirand, Eric; Meyer, Yves; Pascal, Frédéric; Wickerhauser, Mladen Victor (1992), Improved predictability of two-dimensional turbulent flows using wavelet packet compression, Fluid Dynamics Research, 10, 4-6, p. 229-250. http://dx.doi.org/10.1016/0169-5983(92)90024-Q

Type
Article accepté pour publication ou publié
Date
1992
Journal name
Fluid Dynamics Research
Volume
10
Number
4-6
Publisher
IOP Science
Pages
229-250
Publication identifier
http://dx.doi.org/10.1016/0169-5983(92)90024-Q
Metadata
Show full item record
Author(s)
Farge, Marie
Goirand, Eric
Meyer, Yves
Pascal, Frédéric cc
Wickerhauser, Mladen Victor
Abstract (EN)
We propose to use new orthonormal wavelet packet bases, more efficient than the Fourier basis, to compress two-dimensional turbulent flows. We define the “best basis” of wavelet packets as the one which, for a given enstrophy density, condenses the L2 norm into a minimum number of non-negligible wavelet packet coefficients. Coefficients below a threshold are discarded, reducing the number of degrees of freedom. We then compare the predictability of the original flow evolution with several such reductions, varying the number of retained coefficients, either from a Fourier basis, or from the best-basis of wavelet packets. We show that for a compression ratio of 1/2, we still have a deterministic predictability using the wavelet packet best-basis, while it is lost when using the Fourier basis. Likewise, for compression ratios of 1/20 and 1/200 we still have statistical predictability using the wavelet packet best-basis, while it is lost when using the Fourier basis. In fact, the significant wavelet packet coefficients in the best-basis appear to correspond to coherent structures. The weak coefficients correspond to vorticity filaments, which are only passively advected by the coherent structures. In conclusion, the wavelet packet best-basis seems to distinguish the low-dimensional dynamically active part of the flow from the high-dimensional passive components. It gives us some hope of drastically reducing the number of degrees of freedom necessary to the computation of two-dimensional turbulent flows.
Subjects / Keywords
wavelet packets; two-dimensional turbulent flows

Related items

Showing items related by title and author.

  • Thumbnail
    A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description 
    Caglioti, E.; Lions, Pierre-Louis; Marchioro, C.; Pulvirenti, M. (1992) Article accepté pour publication ou publié
  • Thumbnail
    On the motion of a rigid body in a two-dimensional irregular ideal flow 
    Glass, Olivier; Sueur, Franck (2012) Article accepté pour publication ou publié
  • Thumbnail
    On the uniqueness of the solution of the two-dimensional Navier–Stokes equation with a Dirac mass as initial vorticity 
    Gallagher, Isabelle; Gallay, Thierry; Lions, Pierre-Louis (2005) Article accepté pour publication ou publié
  • Thumbnail
    Control at a distance of the motion of a rigid body immersed in a two-dimensional viscous incompressible fluid 
    Kolumbán, József (2020) Article accepté pour publication ou publié
  • Thumbnail
    External boundary control of the motion of a rigid body immersed in a perfect two-dimensional fluid 
    Glass, Olivier; Kolumban, Jozsef; Sueur, Franck (2020) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo