• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

A mountain pass method for the numerical solution of semilinear wave equations

Choi, Y.S.; McKenna, P.J.; Romano, Marc (1993), A mountain pass method for the numerical solution of semilinear wave equations, Numerische Mathematik, 64, 1, p. 487-509. http://dx.doi.org/10.1007/BF01388701

Type
Article accepté pour publication ou publié
Date
1993
Journal name
Numerische Mathematik
Volume
64
Number
1
Publisher
Springer
Pages
487-509
Publication identifier
http://dx.doi.org/10.1007/BF01388701
Metadata
Show full item record
Author(s)
Choi, Y.S.
McKenna, P.J.
Romano, Marc
Abstract (EN)
It is well-known that periodic solutions of semilinear wave equations can be obtained as critical points of related functionals. In the situation that we studied, there is usually an obvious solution obtained as a solution of linear problem. We formulate a dual variational problem in such a way that the obvious solution is a local minimum. We then find additional non-obvious solutions via a numerical mountain pass algorithm, based on the theorems of Ambrosetti, Rabinowitz and Ekeland. Numerical results are presented.
Subjects / Keywords
linear problem; numerical mountain pass algorithm; semilinear wave equations

Related items

Showing items related by title and author.

  • Thumbnail
    Genericity of the existence of infinitely many solutions for a class of semilinear elliptic equations in Rn 
    Allessio, Francesca; Caldiroli, Paolo; Montecchiari, Piero (1998) Article accepté pour publication ou publié
  • Thumbnail
    Optimal filtration for the approximation of boundary controls for the one-dimensional wave equation using a finite-difference method 
    Lissy, Pierre; Roventa, Ionel (2019) Article accepté pour publication ou publié
  • Thumbnail
    Structure of the set of steady-state solutions and asymptotic behaviour of semilinear heat equations 
    Lions, Pierre-Louis (1984) Article accepté pour publication ou publié
  • Thumbnail
    Uniform observability estimates for the 1-D discretized wave equation and the random choice method 
    Coron, Jean-Michel; Ervedoza, Sylvain; Glass, Olivier (2009) Article accepté pour publication ou publié
  • Thumbnail
    Asymptotics of the solutions of the stochastic lattice wave equation 
    Ryzhik, Lenya; Olla, Stefano; Komorowski, Tomasz (2013) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo