A mountain pass method for the numerical solution of semilinear wave equations
Choi, Y.S.; McKenna, P.J.; Romano, Marc (1993), A mountain pass method for the numerical solution of semilinear wave equations, Numerische Mathematik, 64, 1, p. 487-509. http://dx.doi.org/10.1007/BF01388701
Type
Article accepté pour publication ou publiéDate
1993Journal name
Numerische MathematikVolume
64Number
1Publisher
Springer
Pages
487-509
Publication identifier
Metadata
Show full item recordAbstract (EN)
It is well-known that periodic solutions of semilinear wave equations can be obtained as critical points of related functionals. In the situation that we studied, there is usually an obvious solution obtained as a solution of linear problem. We formulate a dual variational problem in such a way that the obvious solution is a local minimum. We then find additional non-obvious solutions via a numerical mountain pass algorithm, based on the theorems of Ambrosetti, Rabinowitz and Ekeland. Numerical results are presented.Subjects / Keywords
linear problem; numerical mountain pass algorithm; semilinear wave equationsRelated items
Showing items related by title and author.
-
Allessio, Francesca; Caldiroli, Paolo; Montecchiari, Piero (1998) Article accepté pour publication ou publié
-
Lissy, Pierre; Roventa, Ionel (2019) Article accepté pour publication ou publié
-
Structure of the set of steady-state solutions and asymptotic behaviour of semilinear heat equations Lions, Pierre-Louis (1984) Article accepté pour publication ou publié
-
Uniform observability estimates for the 1-D discretized wave equation and the random choice method Coron, Jean-Michel; Ervedoza, Sylvain; Glass, Olivier (2009) Article accepté pour publication ou publié
-
Ryzhik, Lenya; Olla, Stefano; Komorowski, Tomasz (2013) Article accepté pour publication ou publié