Show simple item record

dc.contributor.authorLions, Pierre-Louis
dc.contributor.authorRouy, Elisabeth
dc.contributor.authorTourin, Agnès
dc.date.accessioned2014-12-15T09:35:24Z
dc.date.available2014-12-15T09:35:24Z
dc.date.issued1993
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/14438
dc.language.isoenen
dc.subjectHamilton-Jacobi equationen
dc.subjectShape-from-Shading problemen
dc.subject.ddc515en
dc.titleShape-from-shading, viscosity solutions and edgesen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenThis article deals with the so-called Shape-from-Shading problem which arises when recovering a shape from a single image. The general case of a distribution of light sources illuminating a Lambertian surface is considered. This involves original definitions of three types of edges, mainly the apparent contours, the grazing light edges and the shadow edges. The elevation of the shape is expressed in terms of viscosity solution of a first-order Hamilton-Jacobi equation with various boundary conditions on these edges. Various existence and uniqueness results are presented.en
dc.relation.isversionofjnlnameNumerische Mathematik
dc.relation.isversionofjnlvol64en
dc.relation.isversionofjnlissue1en
dc.relation.isversionofjnldate1993
dc.relation.isversionofjnlpages323-353en
dc.relation.isversionofdoihttp://dx.doi.org/10.1007/BF01388692en
dc.relation.isversionofjnlpublisherSpringeren
dc.subject.ddclabelAnalyseen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record