dc.contributor.author | Bensoussan, Alain | |
dc.date.accessioned | 2014-12-15T09:25:04Z | |
dc.date.available | 2014-12-15T09:25:04Z | |
dc.date.issued | 1990 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/14424 | |
dc.language.iso | en | en |
dc.subject | nonlinearity | en |
dc.subject | Navier-Stokes equation | en |
dc.subject | dimension 2 | en |
dc.subject.ddc | 515 | en |
dc.title | A model of stochastic differential equation in Hilbert applicable to Navier-Stokes equation in dimension 2 | en |
dc.type | Communication / Conférence | |
dc.description.abstracten | Nagase has given new results for the existence of solutions of stochastic partial differential equations. The main idea is to use a compactness argument based on a special Hilbert space introduced by J. L. Lions (1961) in the context of parabolic linear partial differential equations. Previously, the author considered a class of nonlinear partial differential equations which generalize those of Nagase as far as the nonlinearity is considered. Here the author considers another class of nonlinearity which covers the Navier-Stokes equation in dimension 2. | en |
dc.identifier.citationpages | 2335-2336 | en |
dc.relation.ispartoftitle | Proceedings of the 29th IEEE Conference on Decision and Control, 1990., | en |
dc.relation.ispartofpublname | IEEE | en |
dc.relation.ispartofdate | 1990 | |
dc.subject.ddclabel | Analyse | en |
dc.relation.conftitle | 29th IEEE Conference on Decision and Control, 1990. | en |
dc.relation.confdate | 1990-12 | |
dc.relation.confcity | Honolulu | en |
dc.relation.confcountry | États-Unis | en |
dc.relation.forthcoming | non | en |
dc.identifier.doi | http://dx.doi.org/10.1109/CDC.1990.204043 | en |