Show simple item record

dc.contributor.authorBounemoura, Abed*
dc.date.accessioned2014-12-11T12:36:08Z
dc.date.available2014-12-11T12:36:08Z
dc.date.issued2016
dc.identifier.issn0001-8708
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/14406
dc.language.isoenen
dc.subjectKAM theorem
dc.subjectHamiltonian systems
dc.subject.ddc520en
dc.titleNon-degenerate Liouville tori are KAM stable
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenIn this short note, we prove that a quasi-periodic torus, with a non-resonant frequency(that can be Diophantine or Liouville) and which is invariant by a sufficiently regularHamiltonian flow, is KAM stable provided it is Kolmogorov non-degenerate. When theHamiltonian is smooth (respectively Gevrey-smooth, respectively real-analytic), the in-variant tori are smooth (respectively Gevrey-smooth, respectively real-analytic). Thisanswers a question raised in a recent work by Eliasson, Fayad and Krikorian ([EFK]). Wealso take the opportunity to ask other questions concerning the stability of non-resonantinvariant quasi-periodic tori in (analytic or smooth) Hamiltonian systems.
dc.relation.isversionofjnlnameAdvances in Mathematics
dc.relation.isversionofjnlvol292
dc.relation.isversionofjnldate2016
dc.relation.isversionofjnlpages42-51
dc.relation.isversionofdoi10.1016/j.aim.2016.01.012
dc.identifier.urlsitehttps://arxiv.org/abs/1412.0509v1
dc.relation.isversionofjnlpublisherElsevier
dc.subject.ddclabelSciences connexes (physique, astrophysique)en
dc.description.submittednonen
dc.description.ssrncandidatenon
dc.description.halcandidateoui
dc.description.readershiprecherche
dc.description.audienceInternational
dc.relation.Isversionofjnlpeerreviewedoui
dc.date.updated2018-07-23T12:28:23Z
hal.person.labIds*


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record