Show simple item record

hal.structure.identifierCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
dc.contributor.authorCardaliaguet, Pierre*
hal.structure.identifierDipartimento di Matematica [Rome]
dc.contributor.authorPorretta, Alessio*
hal.structure.identifierCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
dc.contributor.authorTonon, Daniela*
dc.date.accessioned2014-12-08T13:24:49Z
dc.date.available2014-12-08T13:24:49Z
dc.date.issued2015
dc.identifier.issn0944-2669
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/14391
dc.language.isoenen
dc.subjectReverse Hölder inequality
dc.subjectMean Field Games
dc.subjectHamilton-Jacobi equation
dc.subject.ddc515en
dc.titleSobolev regularity for the first order Hamilton–Jacobi equation
dc.typeArticle accepté pour publication ou publié
dc.contributor.editoruniversityotherDipartimento di Matematica, Universita di Roma Tor Vergata;Italie
dc.description.abstractenWe provide Sobolev estimates for solutions of first order Hamilton-Jacobi equa-tions with Hamiltonians which are superlinear in the gradient variable. We also show that thesolutions are differentiable almost everywhere. The proof relies on an inverse H ̈older inequality.Applications to mean field games are discussed.
dc.relation.isversionofjnlnameCalculus of Variations and Partial Differential Equations
dc.relation.isversionofjnlvol54
dc.relation.isversionofjnlissue3
dc.relation.isversionofjnldate2015
dc.relation.isversionofjnlpages3037-3065
dc.relation.isversionofdoi10.1007/s00526-015-0893-3
dc.identifier.urlsitehttp://arxiv.org/abs/1411.0227v1
dc.relation.isversionofjnlpublisherSpringer
dc.subject.ddclabelAnalyseen
dc.description.submittednonen
dc.description.ssrncandidatenon
dc.description.halcandidateoui
dc.description.readershiprecherche
dc.description.audienceInternational
dc.relation.Isversionofjnlpeerreviewedoui
dc.date.updated2016-02-08T17:36:06Z
hal.faultCodeThe supplied XML description does not validate the AOfr schema
hal.author.functionaut
hal.author.functionaut
hal.author.functionaut


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record