• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Sobolev regularity for the first order Hamilton–Jacobi equation

Cardaliaguet, Pierre; Porretta, Alessio; Tonon, Daniela (2015), Sobolev regularity for the first order Hamilton–Jacobi equation, Calculus of Variations and Partial Differential Equations, 54, 3, p. 3037-3065. 10.1007/s00526-015-0893-3

Type
Article accepté pour publication ou publié
External document link
http://arxiv.org/abs/1411.0227v1
Date
2015
Journal name
Calculus of Variations and Partial Differential Equations
Volume
54
Number
3
Publisher
Springer
Pages
3037-3065
Publication identifier
10.1007/s00526-015-0893-3
Metadata
Show full item record
Author(s)
Cardaliaguet, Pierre
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Porretta, Alessio
Dipartimento di Matematica [Rome]
Tonon, Daniela
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We provide Sobolev estimates for solutions of first order Hamilton-Jacobi equa-tions with Hamiltonians which are superlinear in the gradient variable. We also show that thesolutions are differentiable almost everywhere. The proof relies on an inverse H ̈older inequality.Applications to mean field games are discussed.
Subjects / Keywords
Reverse Hölder inequality; Mean Field Games; Hamilton-Jacobi equation

Related items

Showing items related by title and author.

  • Thumbnail
    Hölder Regularity for Viscosity Solutions of Fully Nonlinear, Local or Nonlocal, Hamilton–Jacobi Equations with Superquadratic Growth in the Gradient 
    Cardaliaguet, Pierre; Rainer, Catherine (2011) Article accepté pour publication ou publié
  • Thumbnail
    Second order mean field games with degenerate diffusion and local coupling 
    Cardaliaguet, Pierre; Graber, Philip Jameson; Porretta, Alessio; Tonon, Daniela (2015) Article accepté pour publication ou publié
  • Thumbnail
    Degenerate second order mean field games systems 
    Porretta, Alessio; Graber, Philip Jameson; Cardaliaguet, Pierre; Tonon, Daniela (2014) Communication / Conférence
  • Thumbnail
    A note on the regularity of solutions of Hamilton-Jacobi equations with superlinear growth in the gradient variable 
    Cardaliaguet, Pierre (2009) Article accepté pour publication ou publié
  • Thumbnail
    Fully nonlinear Neumann type boundary conditions for first-order Hamilton–Jacobi equations 
    Barles, Guy; Lions, Pierre-Louis (1991) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo