New formulation of the compressible Navier-Stokes equations and parabolicity of the density
Haspot, Boris (2014), New formulation of the compressible Navier-Stokes equations and parabolicity of the density. https://basepub.dauphine.fr/handle/123456789/14365
Type
Document de travail / Working paperLien vers un document non conservé dans cette base
http://arxiv.org/pdf/1411.5501.pdfDate
2014Éditeur
Université Paris-Dauphine
Ville d’édition
Paris
Pages
38
Métadonnées
Afficher la notice complèteAuteur(s)
Haspot, BorisRésumé (EN)
In this paper we give a new formulation of the compressible Navier-St okes by introducing an suitable effective velocity v = u + ∇ φ ( ρ ) provided that the viscosity coefficients verify the algebraic relation of [3]. We give in particular a ve ry simple proof of the entropy discovered in [3], in addition our argument show why the al- gebraic relation of [3] appears naturally. More precisely the system reads in a very surprising way as two parabolic equation on the density ρ and the vorticity curl v , and as a transport equation on the divergence div v . We show the existence of strong solution with large initial data in finite time when ( ρ 0 − 1) ∈ B N p p, 1 . A remarkable feature of this solution is the regularizing effects on the density. We extend this result to the case of global strong solution with small initial data.Mots-clés
Navier-Stokes equationsPublications associées
Affichage des éléments liés par titre et auteur.
-
Haspot, Boris (2013) Document de travail / Working paper
-
Burtea, Cosmin; Haspot, Boris (2020) Article accepté pour publication ou publié
-
Haspot, Boris (2014) Communication / Conférence
-
Haspot, Boris (2016) Article accepté pour publication ou publié
-
Haspot, Boris (2018) Document de travail / Working paper