Show simple item record

hal.structure.identifier
dc.contributor.authorHaas, Bénédicte*
dc.date.accessioned2014-12-03T15:09:24Z
dc.date.available2014-12-03T15:09:24Z
dc.date.issued2017
dc.identifier.issn1083-6489
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/14357
dc.language.isoenen
dc.subjectRandom trees
dc.subjectaggregation
dc.subject.ddc519en
dc.titleAsymptotics of heights in Rrandom trees constructed by aggregation
dc.typeArticle accepté pour publication ou publié
dc.contributor.editoruniversityotherUniversité Paris–Sud;France
dc.description.abstractenTo each sequence (an) of positive real numbers we associate a growing sequence (Tn) of continuous trees built recursively by gluing at step n a segment of length an on a uniform point of the pre–existing tree, starting from a segment T1 of length a1. Previous works [5, 10] on that model focus on the influence of (an) on the compactness and Hausdorff dimension of the limiting tree. Here we consider the cases where the sequence (an) is regularly varying with a non–negative index, so that the sequence (Tn) explodes. We determine the asymptotics of the height of Tn and of the subtrees of Tn spanned by the root and ℓ points picked uniformly at random and independently in Tn, for all ℓ∈N.
dc.relation.isversionofjnlnameElectronic Journal of Probability
dc.relation.isversionofjnlvol22
dc.relation.isversionofjnldate2017
dc.relation.isversionofjnlpagesn°21
dc.relation.isversionofdoi10.1214/17-EJP31
dc.identifier.urlsitehttps://arxiv.org/abs/1606.06536v1
dc.relation.isversionofjnlpublisherInstitute of Mathematical Statistics
dc.subject.ddclabelProbabilités et mathématiques appliquéesen
dc.description.submittednonen
dc.description.ssrncandidatenon
dc.description.halcandidatenon
dc.description.readershiprecherche
dc.description.audienceInternational
dc.relation.Isversionofjnlpeerreviewedoui
dc.date.updated2018-07-23T12:40:29Z
hal.author.functionaut


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record