Show simple item record

dc.contributor.authorDoyen, Luc
dc.contributor.authorNajman, Laurent
dc.contributor.authorMattioli, Juliette
dc.date.accessioned2014-12-03T14:20:35Z
dc.date.available2014-12-03T14:20:35Z
dc.date.issued1995
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/14352
dc.language.isoenen
dc.subjectmathematical morphologyen
dc.subjectdilation tubesen
dc.subjectmutational calculusen
dc.subject.ddc515en
dc.titleMutational equations of the morphological dilation tubesen
dc.typeArticle accepté pour publication ou publié
dc.contributor.editoruniversityotherLIGM - Laboratoire d'Informatique Gaspard-Monge;France
dc.description.abstractenThe present paper provides some differential results dealing with the morphological dilation of a compact set in the nonregular case. Indeed the evolution of dilated sets with respect to time is characterized through mutational equations which are new mathematical tools extending the concept of differential equations to the metric space of all nonempty compact sets of ℝ n . Using this new tool, we prove that the mutation of the dilation is the normal cone which is a generalization of the classical notion of normal. This result clearly establishes that the dilation transforms this initial set in the direction of the normal at any point of the set. Furthermore, it does not require any regularity assumptions on the compact set.en
dc.relation.isversionofjnlnameJournal of Mathematical Imaging and Vision
dc.relation.isversionofjnlvol5en
dc.relation.isversionofjnlissue3en
dc.relation.isversionofjnldate1995
dc.relation.isversionofjnlpages219-230en
dc.relation.isversionofdoihttp://dx.doi.org/10.1007/BF01248373en
dc.identifier.urlsitehttps://hal-upec-upem.archives-ouvertes.fr/hal-00622457en
dc.relation.isversionofjnlpublisherSpringeren
dc.subject.ddclabelAnalyseen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record