Measurability and integrability of the weak upper limit of a sequence of multifunctions
Hess, Christian (1990), Measurability and integrability of the weak upper limit of a sequence of multifunctions, Journal of Mathematical Analysis and Applications, 153, 1, p. 226-249. http://dx.doi.org/10.1016/0022-247X(90)90275-K
Type
Article accepté pour publication ou publiéDate
1990Journal name
Journal of Mathematical Analysis and ApplicationsVolume
153Number
1Publisher
Elsevier
Pages
226-249
Publication identifier
Metadata
Show full item recordAuthor(s)
Hess, ChristianAbstract (EN)
We provide several properties of the weak upper limit of a sequence of subsets of a separable Banach space, such as a criterion of non-vacuity, of closedness, etc. We also examine the measurability of the multifunction defined as the weak upper limit of a sequence of multifunctions. At last, applications to the existence of a measurable and Bochner integrable selector for this multifunction are presented.Subjects / Keywords
multifunction; separable Banach spaceRelated items
Showing items related by title and author.
-
Saadoune, Mohamed; Hess, Christian; Castaing, Charles (2006-09) Chapitre d'ouvrage
-
Hess, Christian; Barbati, Alberto (1998) Article accepté pour publication ou publié
-
Hess, Christian (2007) Article accepté pour publication ou publié
-
Hess, Christian (2009) Article accepté pour publication ou publié
-
Schmitt, Laurent; Beisel, Jean-Nicolas; Preusser, Franck; De Jong, Carmen; Wantzen, Karl Matthias; Chardon, Valentin; Staentzel, Cybill; Eschbach, David; Damm, Christian; Rixhon, Gilles; Salomon, Ferréol; Glaser, Rüdiger; Himmelsbach, Iso; Meinard, Yves; Dumont, Serge; Hardion, Laurent; Houssier, Jérôme; Rambeau, Claire; Chapkanski, Stoil; Brackhane, Sébastien (2020) Chapitre d'ouvrage