Derivation of nonlinear Gibbs measures from many-body quantum mechanics
Lewin, Mathieu; Nam, Phan Thành; Rougerie, Nicolas (2015), Derivation of nonlinear Gibbs measures from many-body quantum mechanics, Journal de l'école Polytechnique. Mathématiques, 2, p. 65-115. 10.5802/jep.18
Type
Article accepté pour publication ou publiéExternal document link
https://arxiv.org/abs/1410.0335v3Date
2015Journal name
Journal de l'école Polytechnique. MathématiquesVolume
2Published in
Paris
Pages
65-115
Publication identifier
Metadata
Show full item recordAbstract (EN)
We prove that nonlinear Gibbs measures can be obtained from the corresponding many-body, grand-canonical, quantum Gibbs states, in a mean-field limit where the temperature T diverges and the interaction strength behaves as 1/T. We proceed by characterizing the interacting Gibbs state as minimizing a functional counting the free-energy relatively to the non-interacting case. We then perform an infinite-dimensional analogue of phase-space semiclassical analysis, using fine properties of the quantum relative entropy, the link between quantum de Finetti measures and upper/lower symbols in a coherent state basis, as well as Berezin-Lieb type inequalities. Our results cover the measure built on the defocusing nonlinear Schrödinger functional on a finite interval, as well as smoother interactions in dimensions d≥2.Subjects / Keywords
nonlinear Gibbs measures; quantum mechanicsRelated items
Showing items related by title and author.
-
Lewin, Mathieu; Nam, Phan Thành; Rougerie, Nicolas (2019-06) Article accepté pour publication ou publié
-
Lewin, Mathieu; Nam, Phan Thành; Rougerie, Nicolas (2021) Article accepté pour publication ou publié
-
Lewin, Mathieu; Nam, Phan Thành; Rougerie, Nicolas (2018) Document de travail / Working paper
-
Lewin, Mathieu; Nam, Phan Thành; Rougerie, Nicolas (2015) Communication / Conférence
-
Lewin, Mathieu; Nam, Phan Thành; Rougerie, Nicolas (2018) Article accepté pour publication ou publié