• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

New Size x Curvature Conditions for Strict Quasiconvexity of Sets

Chavent, Guy (1991), New Size x Curvature Conditions for Strict Quasiconvexity of Sets, SIAM Journal on Control and Optimization, 29, 6, p. 1348-1372. http://dx.doi.org/10.1137/0329069

Type
Article accepté pour publication ou publié
Date
1991
Journal name
SIAM Journal on Control and Optimization
Volume
29
Number
6
Publisher
SIAM
Pages
1348-1372
Publication identifier
http://dx.doi.org/10.1137/0329069
Metadata
Show full item record
Author(s)
Chavent, Guy
Abstract (EN)
Given a closed, not necessarily convex set D of a Hilbert space, the problem of the existence of a neighborhood $\mathcal{V}$ on which the projection on D is uniquely defined and Lipschitz continuous is considered, and such that the corresponding minimization problem has no local minima. After having equipped the set D with a family $\mathcal{P}$ of paths playing for D the role the segments play for a convex set, the notion of strict quasiconvexity of $(D,\mathcal{P})$ is defined, which will ensure the existence of such a neighborhood $\mathcal{V}$. Two constructive sufficient conditions for the strict-quasiconvexity of D are given, the $R_G $-size $ \times $ curvature condition and the $\Theta $-size $ \times $ curvature condition, which both amount to checking for the strict positivity of quantities defined by simple formulas in terms of arc length, tangent vectors, and radii of curvature along all paths of $\mathcal{P}$. An application to the study of wellposedness and local minima of a nonlinear least squares problem is given.
Subjects / Keywords
projection theory; approximation theory; nonlinear least squares; inverse problems

Related items

Showing items related by title and author.

  • Thumbnail
    Quasi-convex sets and size × curvature condition, application to nonlinear inversion 
    Chavent, Guy (1991) Article accepté pour publication ou publié
  • Thumbnail
    Global line search strategies for nonlinear least squares problems based on curvature and projected curvature 
    Al Khoury, Philippe; Chavent, Guy (2006) Communication / Conférence
  • Thumbnail
    On the uniqueness of local minima for general abstract nonlinear least-squares problems 
    Chavent, Guy (1988) Article accepté pour publication ou publié
  • Thumbnail
    A geometric theory forL 2-stability of the inverse problem in a one-dimensional elliptic equation from anH 1-observation 
    Chavent, Guy; Kunisch, Karl (1993) Article accepté pour publication ou publié
  • Thumbnail
    Optimisation of the total population size with respect to the initial condition for semilinear parabolic equations: Two-scale expansions and symmetrisations. 
    Mazari, Idriss; Nadin, Grégoire; Toledo Marrero, Ana (2021) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo