Show simple item record

dc.contributor.authorChavent, Guy
dc.date.accessioned2014-10-30T13:56:25Z
dc.date.available2014-10-30T13:56:25Z
dc.date.issued1991
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/14102
dc.language.isoenen
dc.subjectnonlinear least-squares problemsen
dc.subjectHilbert spaceen
dc.subject.ddc519en
dc.titleQuasi-convex sets and size × curvature condition, application to nonlinear inversionen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenWe define a family of sets of a Hilbert space (“quasi-convex sets”) on which a generalization of the usual theory of projection on convex sets can be defined (existence, uniqueness, and stability of the projection of all points of some neighborhood of the set). We then give a constructive sufficient condition, called the size × curvature condition, for a setD to be quasi-convex, which involves radii of curvatures of curves lying on the setD. Finally, we use the above result for the study of nonlinear least-squares problems, as they appear in parameter estimation, for which we give a sufficient condition ensuring existence, uniqueness, and stability.en
dc.relation.isversionofjnlnameApplied Mathematics and Optimization
dc.relation.isversionofjnlvol24en
dc.relation.isversionofjnlissue1en
dc.relation.isversionofjnldate1991
dc.relation.isversionofjnlpages129-169en
dc.relation.isversionofdoihttp://dx.doi.org/10.1007/BF01447739en
dc.relation.isversionofjnlpublisherSpringeren
dc.subject.ddclabelProbabilités et mathématiques appliquéesen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record