dc.contributor.author | Saint-Pierre, Patrick | |
dc.date.accessioned | 2014-10-30T13:55:39Z | |
dc.date.available | 2014-10-30T13:55:39Z | |
dc.date.issued | 1990 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/14101 | |
dc.language.iso | en | en |
dc.subject | differential inclusions | en |
dc.subject.ddc | 519 | en |
dc.title | Approximation of slow solutions to differential inclusions | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | To approach a viable solution of a differential inclusion, i.e., staying at any time in a closed convexK, a sufficient condition is given implying the convergence of an approximation sequence defined from the Euler or Runge-Kutta methods applied to a selection process which corresponds to the slowsolution concept. WhenK is smooth, the convergence condition is satisfied. This proves that the method is implementable on a computer for solving, for instance, differentiable equations with a noncontinuous right-hand side. Since the usual best approximation operator is difficult to implement, we introduce a class of quasi-projectors much more suitable for computation. | en |
dc.relation.isversionofjnlname | Applied Mathematics and Optimization | |
dc.relation.isversionofjnlvol | 22 | en |
dc.relation.isversionofjnlissue | 1 | en |
dc.relation.isversionofjnldate | 1990 | |
dc.relation.isversionofjnlpages | 311-330 | en |
dc.relation.isversionofdoi | http://dx.doi.org/10.1007/BF01447333 | en |
dc.relation.isversionofjnlpublisher | Springer | en |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |
dc.relation.forthcoming | non | en |
dc.relation.forthcomingprint | non | en |