Show simple item record

dc.contributor.authorSaint-Pierre, Patrick
dc.date.accessioned2014-10-30T13:55:39Z
dc.date.available2014-10-30T13:55:39Z
dc.date.issued1990
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/14101
dc.language.isoenen
dc.subjectdifferential inclusionsen
dc.subject.ddc519en
dc.titleApproximation of slow solutions to differential inclusionsen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenTo approach a viable solution of a differential inclusion, i.e., staying at any time in a closed convexK, a sufficient condition is given implying the convergence of an approximation sequence defined from the Euler or Runge-Kutta methods applied to a selection process which corresponds to the slowsolution concept. WhenK is smooth, the convergence condition is satisfied. This proves that the method is implementable on a computer for solving, for instance, differentiable equations with a noncontinuous right-hand side. Since the usual best approximation operator is difficult to implement, we introduce a class of quasi-projectors much more suitable for computation.en
dc.relation.isversionofjnlnameApplied Mathematics and Optimization
dc.relation.isversionofjnlvol22en
dc.relation.isversionofjnlissue1en
dc.relation.isversionofjnldate1990
dc.relation.isversionofjnlpages311-330en
dc.relation.isversionofdoihttp://dx.doi.org/10.1007/BF01447333en
dc.relation.isversionofjnlpublisherSpringeren
dc.subject.ddclabelProbabilités et mathématiques appliquéesen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record