dc.contributor.author | Chavent, Guy | |
dc.date.accessioned | 2014-10-30T13:47:14Z | |
dc.date.available | 2014-10-30T13:47:14Z | |
dc.date.issued | 1988 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/14098 | |
dc.language.iso | en | en |
dc.subject | PDE | en |
dc.subject.ddc | 515 | en |
dc.title | On the uniqueness of local minima for general abstract nonlinear least-squares problems | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | The effectiveness of the inversion of a mapping phi defined on a set C by nonlinear least-squares techniques relies on, among other things, the uniqueness of local minima of the least-squares criterion, which ensures that the numerical optimisation algorithm (if they do) converges towards the global minimum of the least-squares functional. The author defines a number y depending only on C and phi which, if the size of phi (C) is not too large with respect to its curvature, is strictly positive, thus yielding the uniqueness of all local minima having a value smaller than y. The condition y>0 requires neither convexity of C nor any monotonic property of phi , but involves the computation of an infimum over delta C* delta C of first and second derivatives of phi . Numerical applications to the estimation of two parameters in a parabolic equation are given. | en |
dc.relation.isversionofjnlname | Inverse Problems | |
dc.relation.isversionofjnlvol | 4 | en |
dc.relation.isversionofjnlissue | 2 | en |
dc.relation.isversionofjnldate | 1988 | |
dc.relation.isversionofdoi | http://dx.doi.org/10.1088/0266-5611/4/2/007 | en |
dc.relation.isversionofjnlpublisher | IOP | en |
dc.subject.ddclabel | Analyse | en |
dc.relation.forthcoming | non | en |
dc.relation.forthcomingprint | non | en |